Corrigé du seizième devoir à la maison

I.1.1. D'après la formule du binôme,

$$\sum_{k=0}^{n} \binom{n}{k} = (1+1)^n = 2^n.$$

- **I.1.2.** Donc pour tout $n \in \mathbb{N}$, $a_n^* = \alpha$.
- **I.1.3.** Les séries $\sum a_n$ et $\sum a_n^*$ divergent grossièrement car $\alpha \neq 0$.
- I.2.1. Toujours d'après la formule du binôme,

$$\underline{a_n^*} = \frac{1}{2^n} \sum_{k=0}^{+\infty} \binom{n}{k} z^k = \frac{1}{2^n} (z+1)^n.$$

- **I.2.2.1.** C'est du cours : |z| < 1, $A(z) = \frac{1}{1-z}$.
- **I.2.2.2.** La série $\sum a_n^*$ est aussi géométrique, de raison $\frac{1}{2}(1+z)$. Or $|\frac{1}{2}(1+z)| \leqslant \frac{1}{2}(1+|z|) < 1$,

donc la série $\sum a_n^*$ converge et a pour somme

$$\sum_{n=0}^{+\infty} a_n^* = \frac{1}{1 - \frac{1}{2}(1+z)} = \frac{2}{1-z} = 2A(z).$$

- **I.2.3.1.** Comme son terme général ne tend pas vers 0, la série $\sum a_n$ diverge grossièrement.
- **I.2.3.2.** Si z=-2, $a_n^*=(-\frac{1}{2})^n$ et la série géométrique $\sum a_n^*$ converge.
- **I.2.3.3.** La série $\sum a_n^*$ est géométrique de raison $q=\frac{1}{2}\left(1+e^{i\theta}\right)=\cos\frac{\theta}{2}\,e^{i\theta/2},$ où $|q|\in]0,1[$ car $|\theta|\in]0,\pi[.$

La série $\sum a_n^*$ converge et

$$\sum_{n=0}^{+\infty} a_n^* = \frac{2}{1 - e^{i\theta}} = \frac{i e^{-i\theta/2}}{\sin\frac{\theta}{2}} = 1 + \frac{i}{\tan\frac{\theta}{2}}.$$

II.1.1.1. Comme k est fixé,

$$\left| \binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} \underset{n\to+\infty}{\sim} \frac{n^k}{k!} \right|$$

II.1.1.2. Par croissance comparées, on a donc

$$\left| \lim_{n \to +\infty} \frac{1}{2^n} \binom{n}{k} \right| = 0.$$

II.1.2. Puisque q est fixé, $S_q(n,a)$ est une somme finie de termes qui tendent tous vers 0, donc

$$\lim_{n \to +\infty} S_q(n, a) = 0.$$

II.1.3. Soit $\varepsilon > 0$. Comme la suite a tend vers 0, il existe un rang q tel que pour tout $k \ge q$, $|a_k| \le \varepsilon/2$. Fixons un tel q. Soit n > q. On a

$$\begin{aligned} |a_n^*| &= \left| \sum_{k=0}^q \binom{n}{k} \frac{a_k}{2^n} + \sum_{k=q+1}^n \binom{n}{k} \frac{a_k}{2^n} \right| \\ &\leq |S_q(n,a)| + \sum_{k=q+1}^n \binom{n}{k} \frac{|a_k|}{2^n} \\ &\leq |S_q(n,a)| + \frac{\varepsilon}{2} \sum_{k=q+1}^n \binom{n}{k} \frac{1}{2^n} \\ &\leq |S_q(n,a)| + \frac{\varepsilon}{2} \sum_{k=0}^n \binom{n}{k} \frac{1}{2^n} = |S_q(n,a)| + \frac{\varepsilon}{2}. \end{aligned}$$

Or, la suite $(S_q(n,a))_n$ tend vers 0, donc il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0$, $|S_q(n,a)| \leq \varepsilon/2$. Alors, en posant $N = \max\{q, n_0\}$, pour tout $n \geq N$,

$$|a_n^*| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

On a prouvé que

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, \ n \geqslant N \Longrightarrow |a_n^*| \leqslant \varepsilon,$$

ce qui signifie que $\lim_{n \to +\infty} a_n^* = 0$.

II.1.4. Constatons que $\ell = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \ell$, donc

$$a_n^* - \ell = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} (a_k - \ell).$$

En appliquant la question précédente à la suite $(a_n - \ell)$, $\Big|\lim_{n \to +\infty} a_n^* = \ell$.

II.1.5. On a vu en I.2.3.2 que si $a_n = (-2)^n$, la série $\sum a_n^*$ converge, donc la suite (a_n^*) tend vers 0, alors que la suite (a_n) diverge.

Il n'y a donc pas équivalence entre les convergences des suites (a_n) et (a_n^*) .

II.2.1. Sans difficulté,

$$U_0 = S_0, U_1 = 2 S_0 + S_1, U_2 = 3 S_0 + 3 S_1 + S_2, U_3 = 4 S_0 + 6 S_1 + 4 S_2 + S_3.$$

II.2.2.1. On conjecture que

$$U_n = \sum_{k=0}^n \binom{n+1}{k+1} S_k.$$

II.2.2.2. La formule précédente est vraie aux rangs 0, 1, 2 et 3. Soit $n \ge 3$ tel que la formule soit vraie au rang n-1. On a

$$U_n = 2^n \sum_{k=0}^n a_k^* = 2 \cdot 2^{n-1} \sum_{k=0}^{n-1} a_k^* + 2^n a_n^*$$
$$= 2U_{n-1} + \sum_{k=0}^n \binom{n}{k} a_k.$$

Par ailleurs, sachant que $S_{-1} = 0$ par convention,

$$\sum_{k=0}^{n} \binom{n}{k} a_k = \sum_{k=0}^{n} \binom{n}{k} (S_k - S_{k-1})$$

$$= \sum_{k=0}^{n} \binom{n}{k} S_k - \sum_{k=1}^{n} \binom{n}{k} S_{k-1}$$

$$= \sum_{k=0}^{n} \binom{n}{k} S_k - \sum_{k=0}^{n-1} \binom{n}{k+1} S_k$$

$$= \sum_{k=0}^{n-1} \binom{n}{k} - \binom{n}{k+1} S_k + S_n.$$

Alors

$$U_{n} = 2\sum_{k=0}^{n-1} \binom{n}{k+1} S_{k}$$

$$+ \sum_{k=0}^{n-1} \binom{n}{k} - \binom{n}{k+1} S_{k} + S_{n}$$

$$= \sum_{k=0}^{n-1} \binom{n}{k} + \binom{n}{k+1} S_{k} + S_{n}$$

$$= \sum_{k=0}^{n-1} \binom{n+1}{k+1} S_{k} + S_{n} = \sum_{k=0}^{n} \binom{n+1}{k+1} S_{k},$$

ce qui prouve la formule au rang n.

II.2.3. Supposons que $\sum a_n$ converge et notons $S = \sum_{n=0}^{+\infty} a_n$ sa somme. On a

$$T_n = \frac{1}{2^n} U_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n+1}{k+1} S_k$$
$$= \frac{1}{2^n} \sum_{k=1}^{n+1} \binom{n+1}{k} S_{k-1}$$
$$= \frac{2}{2^{n+1}} \sum_{k=0}^{n+1} \binom{n+1}{k} S_{k-1},$$

avec toujours la convention que $S_{-1} = 0$. Cette expression ressemble fortement à l'expression de a_n^* en fonction des a_k . Plus précisément, si l'on pose $b_n = S_{n-1}$, alors $T_n = 2b_{n+1}^*$.

 $b_n = S_{n-1}$, alors $T_n = 2b_{n+1}^*$. Par hypothèse, la suite (b_n) converge vers S. Alors, d'après II.1.4, la suite (b_n^*) converge vers S, donc la suite (T_n) converge vers 2S.

Cela signifie que la série $\sum a_n^*$ converge et a pour somme $2\sum_{n=0}^{+\infty}a_n$.

II.2.4. À nouveau, avec l'exemple de I.2.3.2, si $a_n = (-2)^n$, la série $\sum a_n$ diverge tandis que la série $\sum a_n^*$ converge.

Les séries $\sum a_n$ et $\sum a_n^*$ n'ont pas toujours même nature.