Exercices de colles – première semaine

I

Nature de la série
$$\sum \frac{2^n n! \sqrt[n]{3}}{1 \cdot 4 \cdot 7 \cdots (3n+1)}.$$

Nommons u_n le terme général : il ne s'annule pas et $\lim |u_{n+1}/u_n| = \frac{2}{3} < 1$, donc d'après la règle de d'Alembert, $\sum u_n$ converge.

II CCP18

On considère la suite $u = (u_n)_{n \in \mathbb{N}}$ définie par $u_0 \in]0, \frac{\pi}{2}[$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sin u_n$.

- 1. Montrer qu'elle converge et trouver sa limite.
- **2.** Étudier $\sum u_n^3$. On pourra étudier $u_{n+1} u_n$.
- **3.** Étudier $\sum u_n^2$. On pourra étudier $\ln u_{n+1} \ln u_n$.
- 1. On sait que pour tout $x \in \left]0, \frac{\pi}{2}\right[, \sin x \leqslant x,$ donc pour tout $n \in \mathbb{N}$, comme $u_0 \in \left]0, \frac{\pi}{2}\right[$, par une récurrence immédiate, $u_n \in \left]0, \frac{\pi}{2}\right[$ et $u_{n+1} \leqslant u_n$. Donc la suite décroit : étant positive, elle converge. Notons ℓ sa limite. Puisque sin est continue, à la limite, $\ell = \sin \ell$ donc $\ell = 0$. Finalement, (u_n) décroit vers 0.
- **2.** Alors, la série $\sum (u_{n+1} u_n)$ converge. Or, puisque u_n est proche de 0,

$$u_{n+1} - u_n = \sin u_n - u_n = u_n - \frac{1}{6}u_n^3 + o(u_n^3) - u_n$$

= $-\frac{1}{6}u_n^3 + o(u_n^3) \sim -\frac{1}{6}u_n^3$.

Donc, puisque leurs termes généraux sont de signe constant, les séries $\sum (u_{n+1} - u_n)$ et $\sum (-u_n^3)$ sont de même nature. Ainsi, $\sum u_n^3$ converge.

3. Sur le même principe.

$$\ln u_{n+1} - \ln u_n = \ln \frac{u_{n+1}}{u_n} = \ln \frac{u_n - \frac{1}{6}u_n^3 + o(u_n^3)}{u_n}$$
$$= \ln(1 - \frac{1}{6}u_n^2 + o(u_n^2)) \sim -\frac{1}{6}u_n^2.$$

Comme (u_n) converge vers 0, $(\ln u_n)$ diverge vers $-\infty$, donc $\sum (\ln u_{n+1} - \ln u_n)$ diverge, donc $\sum u_n^2$ diverge.

III CCP1

Montrer que la série de terme général

$$u_n = \ln(2n + (-1)^n) - \ln(2n)$$

est semi-convergente.

On a
$$u_n = \ln\left(1 + \frac{(-1)^n}{2n}\right) = \frac{(-1)^n}{2n} + O\left(\frac{1}{n^2}\right).$$

Comme $\sum 1/n^2$ converge, $\sum O(1/n^2)$ converge absolument donc converge. Et d'après le théorème spécial des séries alternées, $\sum (-1)^n/(2n)$ converge clairement. Donc $\sum u_n$ converge.

Cependant, $\overline{|u_n|} \sim 1/(2n)$ et la série harmonique diverge, donc $\sum |u_n|$ diverge et $\sum u_n$ ne converge pas absolument.

Ainsi, $\sum u_n$ est bien semi-convergente.

IV

Calculer
$$\sum_{n=0}^{+\infty} (-1)^n \int_0^1 t^n \sqrt{1-t^2} \, \mathrm{d}t.$$

Convergence. Nommons u_n le terme général de la série. La suite de terme général $|u_n| = \int_0^1 t^n \sqrt{1-t^2} \, \mathrm{d}t$ décroit vers 0: en effet, pour $t \in [0,1]$ et $n \in \mathbb{N}$, $t^{n+1} \leqslant t^n$ donc $|u_{n+1}| \leqslant |u_n|$; en outre, $0 \leqslant |u_n| \leqslant \int_0^1 t^n \, \mathrm{d}t = 1/(n+1)$. Alors, d'après le théorème des séries alternées, $\sum u_n$ converge.

Somme. Évaluons les sommes partielles. Pour $n \ge 1$,

$$\sum_{k=0}^{n} u_k = \int_0^1 \left(\sum_{k=0}^{n} (-1)^k t^k \right) \sqrt{1 - t^2} \, dt$$
$$= \int_0^1 \frac{\sqrt{1 - t^2}}{1 + t} \, dt - (-1)^{n+1} \int_0^1 t^{n+1} \frac{\sqrt{1 - t^2}}{1 + t} \, dt.$$

La seconde intégrale tend vers 0 car sa valeur absolue est majorée par $\int_0^1 t^{n+1} \, \mathrm{d}t = 1/(n+2)$. En posant $t = \sin \theta$, la première intégrale devient $\int_0^{\pi/2} (1-\sin \theta) \, \mathrm{d}\theta = \frac{\pi}{2} - 1$.

Finalement,
$$\sum_{n=0}^{+\infty} u_n = \frac{\pi}{2} - 1$$
.

 \mathbf{V}

Nature de la série $\sum (-1)^n 10^n / n!$

Notons u_n le terme général, qui est non nul :

$$\left| \frac{u_{n+1}}{u_n} \right| = \frac{10}{n+1} \xrightarrow[n \to +\infty]{} 0 < 1$$

donc d'après la règle de d'Alembert, $\sum u_n$ converge absolument donc converge.

Commentaire. Bien-sûr, le théorème spécial des séries alternées est tout à fait envisageable.

VI CCP18

Considérons la suite définie par $u_0 \geqslant 0$ et

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{e^{-u_n}}{n+1}.$$

- 1. Déterminer les limites des suites (u_n) et (nu_n) .
- **2.** Donner la nature de $\sum u_n$ et $\sum (-1)^n u_n$.
- 1. On voit que pour tout $n \in \mathbb{N}$, $u_n \ge 0$, par une récurrence immédiate. Alors, $0 \le u_n = e^{-u_{n-1}}/n \le 1/n$ et la suite (u_n) tend vers 0. Il s'ensuit que la suite (nu_n) tend vers 1 car $nu_n = e^{-u_{n-1}}$.
- **2.** En passant, $u_n \sim 1/n$ et $\sum u_n$ diverge. En outre, $u_{n-1} \sim 1/(n-1) \sim 1/n$ et

$$(-1)^n u_n = \frac{(-1)^n}{n} + O\left(\frac{1}{n^2}\right).$$

Or $\sum (-1)^n/n$ converge, d'après le critère spécial des séries alternées, et $\sum O(1/n^2)$ converge absolument. Alors, $\sum (-1)^n u_n$ converge.