
Exercices de colles – quatorzième semaine

I MP

Inverser la matrice

 −2 2 −1
1 2 2
2 1 −2

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sans difficulté, par exemple avec la méthode de

Gauss-Jordan, on trouve

P−1 = 1
9

 −2 1 2
2 2 1

−1 2 −2

 .

II AM

1. Pour quelle(s) valeur(s) de n l’application

φ : Rn[X] → R4, P 7→ (P (0), P (1), P (2), P (3))

est-elle bijective ?
2. Dans ce cas, donner sa matrice dans les bases ca-
noniques de Rn[X] et R4.
3. Déterminer les antécédents de la base canonique
de R4.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. D’abord, pour tout n ∈ N, φ est clairement linéaire.
Supposons que φ est bijective. Alors on doit avoir

dim(Rn[X]) = dim(R4), c’est-à-dire n+ 1 = 4, d’où
n = 3.

Réciproquement, supposons que n = 3. Pour mon-
trer que φ est bijective, il suffit de montrer qu’elle
est injective puisque dim(R3[X]) = dim(R4). Soit
P ∈ Kerφ. Alors P (0) = P (1) = P (2) = P (3) = 0,
donc P admet 0, 1, 2 et 3 comme racines. Comme
degP ⩽ 3 et qu’il admet 4 racines distinctes, P = 0.
Donc Kerφ = {0} et φ est injective, donc bijective.

Finalement, φ est bijective si et seulement si n = 3.
2. Les images par φ de la base canonique de R3[X]
sont

φ(1) = (1, 1, 1, 1), φ(X) = (0, 1, 2, 3),
φ(X2) = (0, 1, 4, 9), φ(X3) = (0, 1, 8, 27).

La matrice de φ demandée est donc

A =


1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27

 .

3. Pour obtenir les antécédents de la base canonique
de R4, il suffit d’inverser la matrice A. On trouve
facilement (hum :-), par exemple avec la méthode de
Gauss-Jordan, que

A−1 =


1 0 0 0

− 11
6 3 − 3

2
1
3

1 − 5
2 2 − 1

2
− 1

6
1
2 − 1

2
1
6

 .

On en déduit que

φ−1((1, 0, 0, 0)) = 1 − 11
6 X +X2 − 1

6 X
3,

φ−1((0, 1, 0, 0)) = 3X − 5
2 X

2 + 1
2 X

3,

φ−1((0, 0, 1, 0)) = − 3
2 X + 2X2 − 1

2 X
3,

φ−1((0, 0, 0, 1)) = 1
3 X − 1

2 X
2 + 1

6 X
3.

Commentaire. On peut aussi reconnaitre les poly-
nômes d’interpolation de Lagrange des réels 0, 1, 2, 3.

III ESM18

Inverser la matrice

 1 1 1
1 2 3
1 4 9

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sans difficulté, par exemple avec la méthode Gauss-

Jordan, on trouve

P−1 =

 3 − 5
2

1
2

−3 4 −1
1 − 3

2
1
2

 .

IV CCP

Soit E = R2[X]. Considérons les formes linéaires
définies pour tout P ∈ E par

φ0(P ) = P (0), φ1(P ) = P ′(0), φ2(P ) = P ′′(0),

ψ1(P ) = P (1), ψ2(P ) =
∫ 1

0
P (t)dt.

1. Montrer que les familles B = (φ0, φ1, φ2) et
C = (φ0, ψ1, ψ2) sont des bases de L(E,R).
2. Déterminer la matrice de passage de B à C .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Comme ces familles contiennent 3 vecteurs et que
dimL(E,R) = 3, pour montrer qu’elles sont des bases
de L(E,R), il suffit de montrer qu’elles sont libres.

La famille B. Soit (λ0, λ1, λ2) ∈ R3 tel que

λ0φ0 + λ1φ1 + λ2φ2 = 0.

Cela signifie que pour tout polynôme P ∈ E,

λ0φ0(P ) + λ1φ1(P ) + λ2φ2(P ) = 0,

autrement dit

λ0P (0) + λ1P
′(0) + λ2P

′′(0) = 0.

En évaluant cette relation sur les polynômes de la
base canonique (1, X,X2) de E, on obtient immédia-
tement λ0 = λ1 = λ2 = 0. Ainsi, la famille B est
libre, ce que l’on voulait.
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La famille C . Soit (µ0, µ1, µ2) ∈ R3 tel que
µ0φ0 + µ1ψ1 + µ2ψ2 = 0,

c’est-à-dire que pour tout P ∈ E,

µ0P (0) + µ1P (1) + µ2

∫ 1

0
P (t)dt = 0.

En évaluant toujours sur la base (1, X,X2) de E, on
obtient le système

µ0 + µ1 + µ2 = 0,
µ1 + 1

2 µ2 = 0,
µ1 + 1

3 µ2 = 0.
Une résolution facile donne µ0 = µ1 = µ2 = 0, donc
C est libre.
2. La matrice P de passage de B à C contient, en
colonnes, les coordonnées des vecteurs de C dans B.

Pour commencer, φ0 = 1 · φ0 + 0 · φ1 + 0 · φ2.
Puisque B est une base de L(E,R), on peut écrire

ψ1 = α0φ0 + α1φ1 + α2φ2,

donc pour tout P ∈ E,
ψ1(P ) = α0φ0(P ) + α1φ1(P ) + α2φ2(P ),

c’est-à-dire
P (1) = α0P (0) + α1P

′(0) + α2P
′′(0).

En évaluant cette relation sur la base (1, X,X2) de E,
on a immédiatement

α0 = 1, α1 = 1 et α2 = 1
2 .

De même, ψ2 = β0φ0 + β1φ1 + β2φ2, donc pour
tout P ∈ E,

ψ2(P ) = β0φ0(P ) + β1φ1(P ) + β2φ2(P ),
ou encore∫ 1

0
P (t)dt = β0P (0) + β1P

′(0) + β2P
′′(0).

En évaluant en (1, X,X2),
β0 = 1, β1 = 1

2 et β2 = 1
6 .

Alors, la matrice de passage cherchée est 1 1 1
0 1 1

2
0 1

2
1
6

 .

V MP

Inverser la matrice

 0 a a
a 0 a
a a 0

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cette matrice A s’écrit A = a(J − I), où

J =

 1 1 1
1 1 1
1 1 1

 .

Comme J2 = 3J ,

A2 = a2 (J2 − 2J + I) = a2J + a2 I

= a(A+ aI) + a2 I = aA+ 2a2 I

d’où A(A− aI) = 2a2 I. Donc A est inversible si et
seulement si a ̸= 0 et

A−1 = 1
2a2 (A− aI).

VI CCP18

Considérons E = Mn(R) et A ∈ E.
1. Montrer que l’application

f : E → E, M 7→ M + Tr(M)A

est bijective dès que Tr(A) ̸= −1.
2. On suppose que Tr(A) = −1. Déterminer le noyau
et l’image de f .
3. Résoudre l’équation X + Tr(X)A = B, d’incon-
nue X ∈ E.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Soit M ∈ Ker f . Alors M = − Tr(M)A, donc
M est colinéaire à A et Ker f ⊂ R A. En outre,
f(A) = (1 + Tr(A))A. Si Tr(A) = −1, f(A) = 0
et RA ⊂ Ker f . Donc Ker f = RA. Sinon, A /∈ Ker f ,
donc Ker f ⊊ RA et Ker f = {0}.

Ainsi, f est injective, donc bijective, si et seulement
si Tr(A) ̸= −1.
2. Si Tr(A) = −1, on vient de voir que Ker f = RA.

Soit M ∈ Im f : il existe N ∈ Mn(R) telle que
f(N) = M . Alors

Tr(M) = Tr(N + Tr(N)A)
= Tr(N) + Tr(N) Tr(A) = 0.

Ainsi, M ∈ Ker Tr, ou encore Im f ⊂ Ker Tr. Mais
d’après le théorème du rang, dim(Im f) = n2 − 1. De
plus, dim(Ker Tr) = n2 − 1. Alors, Im f = Ker Tr.
3. Cas où Tr(A) ̸= −1. Comme f est ici bijective,
pour tout B ∈ Mn(R), l’équation f(X) = B admet
une unique solution. En appliquant la trace, on a
Tr(X)(1 + Tr(A)) = Tr(B), donc

X = B − Tr(B)
1 + Tr(A) A.

Cas où Tr(A) = −1. Ici, f n’est pas bijective,
Ker f = RA et Im f = Ker Tr.

Si Tr(B) ̸= 0, B /∈ Im f donc l’équation f(X) = B
n’a pas de solution.

Si Tr(B) = 0, B ∈ Im f et f(B) = B, donc l’en-
semble des solutions de l’équation est la droite affine
B + RA.
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