Exercices de colles — quatorzieme semaine

-2 2 -1
Inverser la matrice 1 2 2
2 1 -2

Sans difficulté, par exemple avec la méthode de
Gauss-Jordan, on trouve

L2 1 2
pPl= 5 2 2 1
-1 2 =2
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1. Pour quelle(s) valeur(s) de n 'application

¢ :R,[X] = R* P (P(0),P(1), P(2), P(3))
est-elle bijective ?

2. Dans ce cas, donner sa matrice dans les bases ca-
noniques de R,,[X] et R%.

3. Déterminer les antécédents de la base canonique
de R%.
1. D’abord, pour tout n € N, ¢ est clairement linéaire.

Supposons que ¢ est bijective. Alors on doit avoir
dim(R,[X]) = dim(R?), c’est-a-dire n + 1 = 4, d’ou
n=3.

Réciproquement, supposons que n = 3. Pour mon-
trer que @ est bijective, il suffit de montrer qu’elle
est injective puisque dim(R3[X]) = dim(R*). Soit
P € Kery. Alors P(0) = P(1) = P(2) = P(3) =0,
donc P admet 0, 1, 2 et 3 comme racines. Comme
deg P < 3 et qu’il admet 4 racines distinctes, P = 0.
Donc Ker ¢ = {0} et ¢ est injective, donc bijective.

Finalement, ¢ est bijective si et seulement si n = 3.

2. Les images par ¢ de la base canonique de R3[X]
sont

‘P(X) = (07 1,2, 3);
o(X3) =(0,1,8,27).

p(1) = (1,1,1,1),
P(X?) =(0,1,4,9),

La matrice de ¢ demandée est donc

1 00 0
111 1
A=171 9 4 3
1 3 9 27

3. Pour obtenir les antécédents de la base canonique
de R?*, il suffit d’inverser la matrice A. On trouve
facilement (hum :-), par exemple avec la méthode de
Gauss-Jordan, que

1 0 0 0

11 3 1

S B B
- 1 -5 9 _1

2 2

11 11

6 2 2 6

On en déduit que

1

¢ 1((1,0,0,0)) =1 — L X + X2 - L X3,
p71((0,1,0,0)) = 3X — 3 X%+ L X3,
¢71((0,0,1,0)) = =3 X +2X% — L X3,
¢71((0,0,0,1)) = %X _ %X2 + %X3.

Commentaire. On peut aussi reconnaitre les poly-
nomes d’interpolation de Lagrange des réels 0,1, 2, 3.
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Sans difficulté, par exemple avec la méthode Gauss-
Jordan, on trouve

IV} ccp

Soit E = Ry[X]. Considérons les formes linéaires
définies pour tout P € F par

¢o(P) = P(0), p1(P) = P'(0), p2(P) = P"(0),

1
vi(P) = P(1), v(P) = / Pt dt.

1. Montrer que les familles & = (¢, ¢1,p2) et
€ = (po,¥1,12) sont des bases de £(F,R).

2. Déterminer la matrice de passage de # a €.

1. Comme ces familles contiennent 3 vecteurs et que
dim £(F,R) = 3, pour montrer qu’elles sont des bases
de £(E,R), il suffit de montrer qu’elles sont libres.

LA FAMILLE %. Soit (A, A1, \2) € R3 tel que
Aopo + A1 + Aape = 0.
Cela signifie que pour tout polynéme P € F,
Ao @o(P) + A1p1(P) + A2 p2(P) =0,
autrement dit
Ao P(0) + X1 P'(0) + X2 P (0) = 0.

En évaluant cette relation sur les polynoémes de la
base canonique (1, X, X?) de E, on obtient immédia-
tement \g = Ay = Ay = 0. Ainsi, la famille Z est
libre, ce que 'on voulait.
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LA FAMILLE % . Soit (po, pi1, it2) € R3 tel que

Bopo + p1 1 + pa e =0,
c’est-a-dire que pour tout P € E,

110 P(0) + 1 P(1) + uz/o P(t)dt = 0.

En évaluant toujours sur la base (1, X, X?) de E, on
obtient le systeme

po+ 1+ p2=0,
p1+ g H2 =0,
M1+%M2=0-

Une résolution facile donne pg = p1 = p2 = 0, donc
€ est libre.

2. La matrice P de passage de & a % contient, en

colonnes, les coordonnées des vecteurs de ¥ dans A.

Pour commencer, oo =1-¢g+0-p1+0- .
Puisque £ est une base de £(E,R), on peut écrire

1 = appo + a1p1 + a2,
donc pour tout P € E,
P1(P) = agpo(P) + arp1(P) + azpz(P),
c’est-a-dire
P(1) = ap P(0) + a; P'(0) + az P"(0).

En évaluant cette relation sur la base (1, X, X?2) de E,
on a immeédiatement

1

ag=1, ag =1et ag = 3.

De méme, 12 = fopo + B1¢1 + P22, donc pour
tout P € E,

VYo (P) = Bopo(P) + B1p1(P) + B2p2(P),
ou encore
1
/ P(t)dt = By P(0) + 1 P'(0) + B2 P"(0).
0
En évaluant en (1, X, X?2),
Bo =1, 51=%etﬁ2:%~

Alors, la matrice de passage cherchée est

1 1 1
1
0 1 5
1 1
0 3 &
V] MP
0 a a
Inverser la matrice [ a 0 «a
a a 0
Cette matrice A s’écrit A =a(J —1I), ou
1 1 1
J=11 1 1
1 1 1

2

2

Comme J? = 3J,
A2 =a*(J? -2J+1)=a*J +d*I
=a(A+al)+a*I=aA+2d1

d’ott A(A—al)=2a?I. Donc A est inversible si et
seulement si a # 0 et

%(A—a[).

Al =
2a

VI
Considérons E = M, (R) et A € E.
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1. Montrer que ’application
fE—=E M—M+Tr(M)A

est bijective dés que Tr(A) # —1.

2. On suppose que Tr(A) = —1. Déterminer le noyau

et I'image de f.
3. Résoudre 'équation X + Tr(X) A = B, d’incon-
nue X € F.

1. Soit M € Ker f. Alors M = —Tr(M) A, donc
M est colinéaire & A et Ker f € RA. En outre,
f(A) = (1 + Tr(A) A. Si Tr(4) = -1, f(A) =0
et RA C Ker f. Donc Ker f = RA. Sinon, A ¢ Ker f,
donc Ker f ¢ RA et Ker f = {0}.

Ainsi, f est injective, donc bijective, si et seulement
si Tr(A) # —1.
2. Si Tr(A) = —1, on vient de voir que Ker f = R A.

Soit M € Im f : il existe N € M, (R) telle que
f(N) =M. Alors

Tr(M) = Tr(N + Tr(N) A)
= Tr(N) + Tr(N) Tr(A) = 0.

Ainsi, M € KerTr, ou encore Im f C Ker Tr. Mais
d’apres le théoréme du rang, dim(Im f) = n? — 1. De
plus, dim(Ker Tr) = n? — 1. Alors, Im f = Ker Tr.

3. Cas oU Tr(A) # —1. Comme f est ici bijective,
pour tout B € M, (R), Péquation f(X) = B admet
une unique solution. En appliquant la trace, on a
Tr(X) (14 Tr(A)) = Tr(B), donc

Tr(B)

1+ Tr(A) A

X=8B
Cas oU Tr(A) = —1. Ici, f n'est pas bijective,
Ker f =RA et Im f = Ker Tr.

Si Tr(B) # 0, B ¢ Im f donc l'équation f(X
n’a pas de solution.

SiTr(B) =0, BelImf et f(B) =B, donc l'en-
semble des solutions de ’équation est la droite affine
B+ RA.

)=B



