Exercices de colles — dix-septieme semaine

(I} WP
5 4 2
Réduire la matrice A= -1 -1 -1
-3 —4 0

SPECTRE. Soit z € R. On a
xa(z) =det(x I3 — A)= (1) det(A — x I3)

5—x 4 2
=—|-1 -1-2z -1
-3 —4 —x
2—x 0 2—x
=—|-1 —-1—2 -1 Ly« L1+ L3
-3 —4 —x
1 0 0
:(.’L‘—Q) —1-1—-=x 0 C3«+ C3—C}
-3 -4 —x+3

=(x+1)(z—2)(x—3).

Ainsi, Spgp(A) = {-1,2,3}. Comme A admet 3 va-
leurs propres distinctes, elle est diagonalisable et ses
sous-espaces propres sont tous 3 de dimension 1.

X
ESPACES PROPRES. Soit X = | vy
z

S mg,l(R).

XeE (A<= A+I3)X=0
6z +4y+22=0
— - - 2=0
—3xr—4y+ z=0

Comme E_;(A) est une droite, ce systéme est de
rang 2. Or, clairement, les deux premiéres lignes sont
indépendantes. Donc on peut éliminer la troisiéme.

3z +2y+2=0
XeFE (A <

x +2=0
= —r=y=2z
-1
Donc E_1(A) =R 1
1

Avec la méme démarche,
XeEA) << (A-213)X=0
3z +4y+22=0
<= —x—3y— z2=0
—3x—4y—22=0
—5y—2=0

<
—r—3y—2=0

z =5y
<~

Ll — L1 +3L2

T =2y

2
Donc E3(4) =R 1
-5

Enfin,

XeE3(A)— (A-3I3)X=0
20 +4y+22=0
= —x—4y— z=0
—3xr—4y—32=0

20 +4y+22=0
<~ Lo+ Lo+ L4
z + 2=0
r=—z
—
y:
1
Donc E3(A) =R 0
-1

DIAGONALISATION. Finalement, A= PD P! avec

-1 2 1
D = diag(—1,2,3) et P = 1 1 0
1 -5 -1
(11} CCP18

Soit B = (A A> ou A e M,(C).

0 A

1. Pour k € N*, calculer B*, puis, pour P € C[X],
exprimer P(B) en fonction de P(A) et P'(A).
2. Montrer que, si B est diagonalisable, A 1’est aussi

et que ce n’est possible que si A = 0.

1. Calculons par blocs. On voit que
A% 242
2 _
w0 %)
et par une récurrence immédiate,
Ak kAR
k _
B = ( 0 A )
Soit P =Y"}_,a, X" € C[X]. On a donc
o (z;;o At Tk Ak)

0 > k=0 Ok AF
([ P(A) AY}_ kay A1
_( 0 P(A) )
_ (P(A) AP’(A)>
0 PA) )

2. Supposons que B est diagonalisable : elle admet
un polynéme annulateur scindé a racines simples, P.
Alors P(A) =0et AP'(A) =0. Comme P est scindé
a racines simples, A est diagonalisable. En particulier,
son spectre n’est pas vide.
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EXERCICES DE COLLES — DIX-SEPTIEME SEMAINE

Soit A une valeur propre de A. D’une part,
P(\) =0, d’autre part AP’(A) = 0. Comme P est a
racines simples, P'(\) # 0 donc A = 0.

Ainsi, A est diagonalisable et n’a que 0 comme
valeur propre, donc A = 0.

ITI WP
0 3 -1
Réduire la matrice A = | —3 0 3
0 0 3

Le calcul ne présente pas de difficulté théorique.
Pour X € R, det(A — A13) = (3—X) (A% +9). Poursui-
vons les calculs dans C. On a Spe A = {3,34, —3i} et
on trouve

1 1
3 0

Pour le dernier, on ne fait pas les calculs. En effet,
comme A est réelle, si X Eggi(é), AX =3iX donc
en conjuguant, AX = —3iX et X € E_3,(A). Alors

1
E 3(A)=C| —i
0
Ainsi, A= PDP~! avec D = 3diag(1,4, —i) et
1 1 1
P=|2 ¢ —i
3 0 0

ccp

(V]
Montrer que I'application g, définie sur R,,[X] par

g(P)=n?XP—(X?+ X)P' — X3P" est un endo-

morphisme. Est-il diagonalisable ? Injectif 7

1. L’application g est clairement linéaire, par linéa-
rité de la dérivation et de la multiplication par un
polyndéme. En outre, si P est de degré d < n — 1,
g(P) est de degré inférieur ou égal & d+ 1 < n. En-
fin, g(X™) = —n X" € R,[X], donc g est bien un
endomorphisme de R,,[X].

2. Pour tout k € [0,n], on a
g(Xk:) — (n2 . k2)Xk+1 _ ka,

donc la matrice de g dans la base canonique de R,,[X]
est

(0)

n?—(n—1)?

—-n

Cette matrice est triangulaire inférieure, donc ses
valeurs propres se lisent sur sa diagonale. Ainsi,

Sp(g) ={0,-1,-2,...,—n}.

2

3

Cela signifie que g admet n + 1 valeurs propres dis-
tinctes, donc g est diagonalisable.

3. Comme 0 € Sp(g), g n’est pas injectif.

V1 WP
4 6 4
Réduire la matrice A = 2 3 2
-7 =10 -7
SPECTRE. Soit x € R. On a
xa(z) =det(x Iz — A)= (—1)>det(A — xI3)
4—x 6 4
=—1 2 3—x 2
-7 -10 —7—=
—x 6 4
= — 0 3—=x 2 Cl — Cl — Cg
r —10 —-7—=x
1 6 4
=z| 0 3—=x 2
-1 =10 —-7—=x
1 6 4
=z|0 3—=x 2 L3+ L3+ I
0 -4 -3—=x
33—z 2
=z _4 g . =x(x? —9+8)

=z -1 =x(x—1)(z+1).

Ainsi, Spgp(A) = {-1,0,1}. Comme A admet 3 va-
leurs propres distinctes, elle est diagonalisable et ses
sous-espaces propres sont tous 3 de dimension 1.

T

Y
z

ESPACES PROPRES. Soit X = € M3 1 (R).
X e E,]_(A) <~ (A—i—[g)X =0
S5x+ 6y+4z2=0

<= 22+ 4dy+22=0
—7x—10y—62=0
Comme E_;(A) est une droite, ce systéme est de
rang 2. Or
5 6
2 s

donc les deux premieres lignes sont indépendantes et

I'on peut éliminer la troisiéme.
r+2y+ z=0

XeFE (A <
Sx+6y+42=0

r+2y+2=0

< Lo <+ Ly —514
—4y—2=0
r= 2y

<
z=—4y
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2
Donc E_1(A) =R 1
—4
Avec la méme démarche,
XeE(A)«— AX=0
4z + 6y+4z=0

<= 224+ 3y+22=0

—7x—10y—72=0
Ici, les deux premieres lignes sont clairement liées,
donc on peut éliminer la premiére.
2z 4+ 3y+22=0
—7x—10y—72=0
Plut6t que de finir avec un pivot fastidieux, procédons
différemment. Les deux équations représentent des

plans ; leur intersection est une droite engendrée par
le produit vectoriel de vecteurs normaux a ces plans :

XEEO(A)<:>{

2 7 1

3|1 Al10] = 0

2 7 -1
1
Donc Ep(A) =R 0
-1

Enfin,
X e El(A) <~ (A—Ig)XZO
3x+ 6y+4z=0

—

=1

22+ 2y+22=0
—7x—10y —82=0
3z+6y+42=0
204+ 2y+22=0

3

3

3 1 2 2
Comme [6 | A1) = 1|, E1(A) =R 1
4 1 -3 -3

DIAGONALISATION. Finalement, A = PD P~! avec

2 1 2
D = diag(—1,0,1) et P = 1 0 1
-4 -1 -3

[VI]

Soit M € M, (R) telle que M3 + M? + M = 0.
Montrer que Tr M € Z.

MT18

Le polynéme X3 + X? + X est annulateur de M.
Parmi ses racines figurent les valeurs propres de M.
Ainsi, Spe(M) C {0, 4, 52}

Mais M est réelle, donc si j est valeur propre de M,
42 Test aussi, avec la méme multiplicité m. Comme
le polynoéme caractéristique de M est scindé sur C,
la trace de M est la somme de ses valeurs propres,
comptées avec leur multiplicité. Alors,

Tr M =m(0)-0+mj+mj> =m(j+35?) = —m e Z

Commentaire. Comme les racines rencontrées ne sont
pas forcément valeurs propres de M, m et m(0)
peuvent étre nulles.



