
Exercices de colles – dix-septième semaine

I WP

Réduire la matrice A =

 5 4 2
−1 −1 −1
−3 −4 0

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spectre. Soit x ∈ R. On a

χA(x) = det(xI3 −A)= (−1)3 det(A− xI3)

= −

∣∣∣∣∣∣
5− x 4 2
−1 −1− x −1
−3 −4 −x

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
2− x 0 2− x
−1 −1− x −1
−3 −4 −x

∣∣∣∣∣∣ L1 ← L1 + L3

= (x− 2)

∣∣∣∣∣∣
1 0 0
−1−1− x 0
−3 −4 −x + 3

∣∣∣∣∣∣ C3 ← C3 − C1

= (x + 1)(x− 2)(x− 3).

Ainsi, SpR(A) = {−1, 2, 3}. Comme A admet 3 va-
leurs propres distinctes, elle est diagonalisable et ses
sous-espaces propres sont tous 3 de dimension 1.

Espaces propres. Soit X =

x
y
z

 ∈M3,1(R).

X ∈ E−1(A)⇐⇒ (A + I3)X = 0

⇐⇒


6x + 4y + 2z = 0

−x − z = 0

−3x− 4y + z = 0

Comme E−1(A) est une droite, ce système est de
rang 2. Or, clairement, les deux premières lignes sont
indépendantes. Donc on peut éliminer la troisième.

X ∈ E−1(A)⇐⇒
{

3x + 2y + z = 0

x + z = 0
⇐⇒ −x = y = z.

Donc E−1(A) = R

−1
1
1

.

Avec la même démarche,

X ∈ E2(A)⇐⇒ (A− 2I3)X = 0

⇐⇒


3x + 4y + 2z = 0

−x− 3y − z = 0

−3x− 4y − 2z = 0

⇐⇒

{
− 5y − z = 0

−x− 3y − z = 0
L1 ← L1 + 3L2

⇐⇒

{
z = 5y

x = 2y

Donc E2(A) = R

 2
1
−5

.

Enfin,

X ∈ E3(A)⇐⇒ (A− 3I3)X = 0

⇐⇒


2x + 4y + 2z = 0

−x− 4y − z = 0

−3x− 4y − 3z = 0

⇐⇒

{
2x + 4y + 2z = 0

x + z = 0
L2 ← L2 + L1

⇐⇒

{
x =−z

y = 0

Donc E3(A) = R

 1
0
−1

.

Diagonalisation. Finalement, A = P DP −1 avec

D = diag(−1, 2, 3) et P =

−1 2 1
1 1 0
1 −5 −1

 .

II CCP18

Soit B =
(

A A
0 A

)
où A ∈Mn(C).

1. Pour k ∈ N∗, calculer Bk, puis, pour P ∈ C[X],
exprimer P (B) en fonction de P (A) et P ′(A).
2. Montrer que, si B est diagonalisable, A l’est aussi
et que ce n’est possible que si A = 0.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Calculons par blocs. On voit que

B2 =
(

A2 2A2

0 A2

)
,

et par une récurrence immédiate,

Bk =
(

Ak k Ak

0 Ak

)
.

Soit P =
∑n

k=0 ak Xk ∈ C[X]. On a donc

P (B) =
(∑n

k=0 ak Ak
∑n

k=0 k ak Ak

0
∑n

k=0 ak Ak

)

=
(

P (A) A
∑n

k=1 k ak Ak−1

0 P (A)

)
=
(

P (A) AP ′(A)
0 P (A)

)
.

2. Supposons que B est diagonalisable : elle admet
un polynôme annulateur scindé à racines simples, P .
Alors P (A) = 0 et AP ′(A) = 0. Comme P est scindé
à racines simples, A est diagonalisable. En particulier,
son spectre n’est pas vide.
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Soit λ une valeur propre de A. D’une part,
P (λ) = 0, d’autre part λP ′(λ) = 0. Comme P est à
racines simples, P ′(λ) ̸= 0 donc λ = 0.

Ainsi, A est diagonalisable et n’a que 0 comme
valeur propre, donc A = 0.

III WP

Réduire la matrice A =

 0 3 −1
−3 0 3

0 0 3

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Le calcul ne présente pas de difficulté théorique.

Pour λ ∈ R, det(A−λI3) = (3−λ)(λ2 + 9). Poursui-
vons les calculs dans C. On a SpC A = {3, 3i,−3i} et
on trouve

E3(A) = C

 1
2
3

 et E3i(A) = C

 1
i
0

 .

Pour le dernier, on ne fait pas les calculs. En effet,
comme A est réelle, si X ∈ E3i(A), AX = 3iX donc
en conjuguant, AX = −3 iX et X ∈ E−3i(A). Alors

E−3i(A) = C

 1
−i

0

 .

Ainsi, A = P DP −1 avec D = 3 diag(1, i,−i) et

P =

 1 1 1
2 i −i
3 0 0

 .

IV CCP

Montrer que l’application g, définie sur Rn[X] par
g(P ) = n2 X P − (X2 + X)P ′ −X3 P ′′ est un endo-
morphisme. Est-il diagonalisable ? Injectif ?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. L’application g est clairement linéaire, par linéa-
rité de la dérivation et de la multiplication par un
polynôme. En outre, si P est de degré d ⩽ n − 1,
g(P ) est de degré inférieur ou égal à d + 1 ⩽ n. En-
fin, g(Xn) = −n Xn ∈ Rn[X], donc g est bien un
endomorphisme de Rn[X].
2. Pour tout k ∈ [[0, n]], on a

g(Xk) = (n2 − k2)Xk+1 − k Xk,

donc la matrice de g dans la base canonique de Rn[X]
est

0
n2 −1 (0)

n2 −1
. . .
. . . −k

n2 −k2 . . .

(0)
. . . −(n−1)

n2 −(n−1)2 −n


.

Cette matrice est triangulaire inférieure, donc ses
valeurs propres se lisent sur sa diagonale. Ainsi,

Sp(g) = {0,−1,−2, . . . ,−n}.

Cela signifie que g admet n + 1 valeurs propres dis-
tinctes, donc g est diagonalisable.
3. Comme 0 ∈ Sp(g), g n’est pas injectif.

V WP

Réduire la matrice A =

 4 6 4
2 3 2
−7 −10 −7

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spectre. Soit x ∈ R. On a

χA(x) = det(xI3 −A)= (−1)3 det(A− xI3)

= −

∣∣∣∣∣∣
4− x 6 4

2 3− x 2
−7 −10 −7− x

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
−x 6 4

0 3− x 2
x −10 −7− x

∣∣∣∣∣∣ C1 ← C1 − C3

= x

∣∣∣∣∣∣
1 6 4
0 3− x 2
−1 −10 −7− x

∣∣∣∣∣∣
= x

∣∣∣∣∣∣
1 6 4
0 3− x 2
0 −4 −3− x

∣∣∣∣∣∣ L3 ← L3 + L1

= x

∣∣∣∣ 3− x 2
−4 −3− x

∣∣∣∣ = x(x2 − 9 + 8)

= x(x2 − 1) = x(x− 1)(x + 1).

Ainsi, SpR(A) = {−1, 0, 1}. Comme A admet 3 va-
leurs propres distinctes, elle est diagonalisable et ses
sous-espaces propres sont tous 3 de dimension 1.

Espaces propres. Soit X =

x
y
z

 ∈M3,1(R).

X ∈ E−1(A)⇐⇒ (A + I3)X = 0

⇐⇒


5x + 6y + 4z = 0

2x + 4y + 2z = 0

−7x− 10y − 6z = 0

Comme E−1(A) est une droite, ce système est de
rang 2. Or ∣∣∣∣ 5 6

2 4

∣∣∣∣ = 8 ̸= 0,

donc les deux premières lignes sont indépendantes et
l’on peut éliminer la troisième.

X ∈ E−1(A)⇐⇒
{

x + 2y + z = 0

5x + 6y + 4z = 0

⇐⇒

{
x + 2y + z = 0

− 4y − z = 0
L2 ← L2 − 5L1

⇐⇒

{
x = 2y

z =−4y

2 3
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Donc E−1(A) = R

 2
1
−4

.

Avec la même démarche,
X ∈ E0(A)⇐⇒ AX = 0

⇐⇒


4x + 6y + 4z = 0

2x + 3y + 2z = 0

−7x− 10y − 7z = 0
Ici, les deux premières lignes sont clairement liées,
donc on peut éliminer la première.

X ∈ E0(A)⇐⇒
{

2x + 3y + 2z = 0

−7x− 10y − 7z = 0
Plutôt que de finir avec un pivot fastidieux, procédons
différemment. Les deux équations représentent des
plans ; leur intersection est une droite engendrée par
le produit vectoriel de vecteurs normaux à ces plans : 2

3
2

 ∧
 7

10
7

 =

 1
0
−1

 .

Donc E0(A) = R

 1
0
−1

.

Enfin,
X ∈ E1(A)⇐⇒ (A− I3)X = 0

⇐⇒


3x + 6y + 4z = 0

2x + 2y + 2z = 0

−7x− 10y − 8z = 0

⇐⇒

{
3x + 6y + 4z = 0

2x + 2y + 2z = 0

Comme

3
6
4

 ∧
1

1
1

 =

 2
1
−3

, E1(A) = R

 2
1
−3

.

Diagonalisation. Finalement, A = P DP −1 avec

D = diag(−1, 0, 1) et P =

 2 1 2
1 0 1
−4 −1 −3

 .

VI MT18

Soit M ∈ Mn(R) telle que M3 + M2 + M = 0.
Montrer que Tr M ∈ Z.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Le polynôme X3 + X2 + X est annulateur de M .
Parmi ses racines figurent les valeurs propres de M .
Ainsi, SpC(M) ⊂ {0, j, j2}.

Mais M est réelle, donc si j est valeur propre de M ,
j2 l’est aussi, avec la même multiplicité m. Comme
le polynôme caractéristique de M est scindé sur C,
la trace de M est la somme de ses valeurs propres,
comptées avec leur multiplicité. Alors,

Tr M = m(0) ·0+mj +mj2 = m(j + j2) = −m ∈ Z.

Commentaire. Comme les racines rencontrées ne sont
pas forcément valeurs propres de M , m et m(0)
peuvent être nulles.
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