
Exercices de colles – dix-huitième semaine

I CCP

Soit A ∈Mn(R) ∖ {0} telle que A3 + 9A = 0.
1. Montrer que ses valeurs propres possibles sont
0, 3 i et −3 i. Est-elle diagonalisable dans Mn(C) ?
dans Mn(R) ?
2. Montrer que A n’est pas inversible si n est impair.
3. Montrer que A ne peut pas être symétrique.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Nous voyons que le polynôme P = X3 + 3X est
annulateur de A. Nous savons que les valeurs propres
de A sont parmi les racines de P , lesquelles sont
précisément 0 et ±3 i.

Comme P est scindé à racines simples sur C, A est
diagonalisable dans Mn(C).

En revanche, P n’est pas scindé sur R, donc il faut
procéder autrement dans Mn(R). Par l’absurde, si
l’on suppose A diagonalisable dans Mn(R), ses va-
leurs propres sont toutes réelles et parmi les racines
de P , donc 0 est la seule valeur propre de A. Donc A
est nulle, puisque qu’elle est semblable à la matrice
nulle. Cela contredit l’hypothèse que A était non nulle.
Donc A n’est pas diagonalisable dans Mn(R).
2. Supposons que n est impair. Le polynôme carac-
téristique χA de A est de degré n, impair, donc ses
limites, infinies, en ±∞ sont opposées : d’après le
théorème des valeurs intermédiaires, cela entraine
que χA s’annule sur R. Donc A admet une valeur
propre réelle. La seule possible est 0, d’après la ques-
tion précédente, donc A n’est pas inversible.
3. Si A était symétrique, elle serait diagonalisable
dans Mn(R), et l’on a vu que c’est impossible. Donc A
ne peut être symétrique.

II CCP

1. Soient des réels a0, . . . , an deux à deux distincts.
Montrer que l’on définit un produit scalaire sur Rn[X]
en posant (P |Q) =

∑n
k=0 P (ak)Q(ak).

2. Montrer que F = {P ∈ Rn[X] |
∑n

k=0 P (ak) = 0}
est un espace vectoriel. Déterminer sa dimension et
son orthogonal.
3. Donner la distance de Xn à F .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Le caractère bilinéaire, symétrique et positif de
(· | ·) ne pose pas de difficulté. Soit P tel que

(P |P ) =
n∑

k=0
(P (ak))2 = 0.

Alors, pour tout k ∈ [[0, n]], P (ak) = 0. Comme les ak

sont distincts deux à deux, P = 0, car il est de degré
au plus n et possède n + 1 racines. Alors, (· | ·) est
défini positif, donc c’est un produit scalaire.

2. Soit P ∈ Rn[X] : clairement, P ∈ F si et seule-
ment si

∑n
k=0 1 · P (ak) = 0, c’est-à-dire (1 |P ) = 0,

donc F = Ker(1|·) où la forme linéaire (1|·) n’est pas
nulle. Donc F est un hyperplan de Rn[X] : c’est un
sous-espace vectoriel, de dimension n. Enfin, on vient
de voir que 1 ⊥ F donc F ⊥ = R1 = R0[X].
3. Alors, la distance de Xn à F est la norme de son
projeté orthogonal U sur F ⊥. On a

U = (Xn |1)
(1 |1) 1 =

(
1

n + 1

n∑
k=0

an
k

)
1,

d’où, comme ∥1∥ =
√

n + 1,

d(Xn, F ) = ∥U∥ = 1√
n + 1

∣∣∣∣∣
n∑

k=0
an

k

∣∣∣∣∣.
III CCP

1. Étant donné un endomorphisme u d’un espace vec-
toriel E de dimension 3, montrer qu’un plan H de E
est stable par u si et seulement s’il existe λ ∈ K tel
que Im(u− λ idE) ⊂ H.
2. Trouver les sous-espaces de R3 stables par

A =

−1 2 −3
−2 5 −2
−3 2 −1

 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Commençons par supposer qu’il existe λ ∈ K tel
que Im(u− λ idE) ⊂ H. Constatons qu’alors, comme
H est de dimension 2, dim Im(u − λ idE) ⩽ 2, ou
encore rg(u − λ idE) ⩽ 2 < 3 donc λ ∈ Sp u. Soit
x ∈ H. On a

u(x) = u(x)− λx + λx ∈ H

car u(x)−λx ∈ Im(u−λ idE) ⊂ H et λx ∈ H. Ainsi,
u(H) ⊂ H.

Supposons réciproquement que u(H) ⊂ H. Alors,
en nommant D une droite supplémentaire de H, on
a E = H ⊕D. Dans une base adaptée à cette somme
directe, la matrice A de u est triangulaire par blocs,
c’est-à-dire qu’elle peut s’écrire sous la forme

A =

 α γ ε
β δ ζ
0 0 λ

.

Là aussi, constatons que λ est alors une valeur propre
évidente de A, donc de u. En outre,

A− λI3 =

α− λ γ ε
β δ − λ ζ
0 0 0

 ,

où l’on voit que Im(u − λ idE) est engendré par les
colonnes de cette matrice, lesquelles ont une coordon-
née nulle selon le troisième vecteur de la base, celui
qui engendre D : ainsi, Im(u− λ idE) ⊂ H.
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2. Clairement, l’énoncé suggère de confondre, volon-
tairement, les espaces R3 et M3,1(R), et les endomor-
phismes et leurs matrices associées.

Selon la question précédente, il est raisonnable de
chercher le spectre de A. Pour x ∈ R,

χA(x) = (−1)3 det(A− xI3)

= −

∣∣∣∣∣∣
−1− x 2 −3
−2 5− x −2
−3 2 −1− x

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
2− x 2 −3

0 5− x −2
−2 + x 2 −1− x

∣∣∣∣∣∣ C1 ← C1 − C3

= (x− 2)

∣∣∣∣∣∣
1 2 −3
0 5− x −2
−1 2 −1− x

∣∣∣∣∣∣
= (x− 2)

∣∣∣∣∣∣
1 2 −3
0 5− x −2
0 4 −4− x

∣∣∣∣∣∣ L3 ← L3 + L1

= (x− 2)((5− x)(−4− x) + 8)
= (x− 2)(x2 − x− 12)
= (x− 2)(x− 4)(x + 3).

Ainsi, Sp(A) = {−3, 2, 4}. En passant, A est diagona-
lisable, qui a trois valeurs propres distinctes.

Soit F un sous-espace vectoriel de R3 stable par A.
Discutons selon sa dimension.

— Si dim F = 0, F = {0R3}, qui est bien stable
par A.

— Si dim F = 1, F est une droite stable, donc est en-
gendré par un vecteur propre. Comme il y a trois
valeurs propres distinctes, il n’y a que trois droites
stables, qui sont les trois sous-espaces propres de A.
Déterminons-les.
Soit X = (x, y, z) ∈ R3 :

X ∈ E2(A) ⇐⇒


−3x + 2y − 3z = 0

−2x + 3y − 2z = 0

−3x + 2y − 3z = 0

⇐⇒

{
−3x + 2y − 3z = 0

5y = 0 L2 ← 3L2 − 2L1

⇐⇒ x + z = 0, y = 0.

Ainsi, E2(A) = R(1, 0,−1). De même,

X ∈ E4(A) ⇐⇒


−5x + 2y − 3z = 0

−2x + y − 2z = 0

−3x + 2y − 5z = 0

⇐⇒


−x + z = 0 L1 ← L1 − L2

−2x + y − 2z = 0

x − z = 0 L3 ← L3 − L2

⇐⇒ x = z, y = 4z.

Ainsi, E4(A) = R(1, 4, 1). Enfin,

X ∈ E−3(A) ⇐⇒


2x + 2y − 3z = 0

−2x + 8y − 2z = 0

−3x + 2y + 2z = 0

⇐⇒


2x + 2y − 3z = 0

10y − 5z = 0 L2 ← L2 + L1

10y − 5z = 0 L3 ← 3L3 + 2L1

⇐⇒ z = 2y, x = 2z.

Ainsi, E−3(A) = R(2, 1, 2).
— Si dim F = 2, F est un hyperplan, et d’après

la première question, F contient l’une des trois
images Im(A− 2I3), Im(A− 4I3) et Im(A + 3I3).
Mais ces images sont des plans, d’après le théo-
rème du rang, et sachant que les noyaux correspon-
dants sont les espaces propres précédents. Donc
F est l’un de ces trois plans. Trouvons-les.
On a

A− 2I3 =

−3 2 −3
−2 3 −2
−3 2 −3

 ,

donc Im(A− 2I3) = Vect((−3,−2,−3), (2, 3, 2)).
De même,

A− 4I3 =

−5 2 −3
−2 1 −2
−3 2 −5

 ,

donc Im(A − 4 I3) = Vect((−5,−2,−3), (2, 1, 2))
et

A + 3I3 =

 2 2 −3
−2 8 −2
−3 2 2

 ,

donc Im(A + 3I3) = Vect((2,−2,−3), (2, 8, 2)).
— Si dim F = 3, F = R3, qui est bien-sûr stable

par A.

IV WP

On se place dans E = C ([−1, 1],R), muni du pro-
duit scalaire usuel (f |g) =

∫ 1
−1 f g.

1. Montrer que les sous-ensembles

F = {f ∈ E | ∀x ∈ [−1, 1], f(−x) = f(x)}
et G = {g ∈ E | ∀x ∈ [−1, 1], g(−x) = −g(x)}

sont des supplémentaires orthogonaux.
2. Considérons la fonction h : x 7→ e−x.

a. Déterminer le projeté orthogonal de h sur F .
b. Déterminer la distance d(h, F ).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. On pourrait raisonner directement par analyse-
synthèse. Procédons autrement.

Considérons les applications j = − id[−1,1] et

φ : E → E, f 7→ f ◦ j.
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Clairement, φ est linéaire. De plus,
F = {f ∈ E | f ◦ j = f}

= {f ∈ E | φ(f) = f} = E1(φ),
G = {g ∈ E | g ◦ j = −g}

= {g ∈ E | φ(g) = −g} = E−1(φ).
Où l’on voit que F et G sont des sous-espaces propres
de φ, donc ce sont des sous-espaces vectoriels de E.

De plus, j ◦ j = id[−1,1], donc pour tout f ∈ E,

φ2(f) = φ ◦ φ(f) = φ(φ(f)) = φ(f ◦ j)
= (f ◦ j) ◦ j = f ◦ (j ◦ j) = f.

Ainsi, φ2 = idE , donc φ est une symétrie de E. Alors
elle est diagonalisable et

E = E1(φ)⊕ E−1(φ) = F ⊕G.

Enfin, si f ∈ F , f est paire ; et si g ∈ G, g est im-
paire ; donc f g est impaire et

∫ 1
−1 f g = 0, car [−1, 1]

est symétrique autour de 0. Autrement dit,
∀f ∈ F,∀g ∈ G, f ⊥ g.

Cela signifie que F ⊥ G.
Finalement, F et G sont bien supplémentaires or-

thogonaux.
2.a. On sait que pour tout x ∈ [−1, 1],
e−x = ch(x)− sh(x), d’où h = ch− sh. Or ch ∈ F et
sh ∈ G, donc le projeté orthogonal de h sur F est

pF (h) = ch .

Commentaire. À proprement parler, il s’agit en fait
de la restriction ch|[−1,1].
2.b. D’après le cours,

d(h, F ) = ∥h− pF (h)∥ = ∥−sh∥

=
√∫ 1

−1 sh2 =
√

1
2 sh(2)− 1.

Commentaire. À vrai dire, le cours ne s’applique pas
ici, car F n’est pas de dimension finie. Mais puisque
E = F ⊕ F ⊥, la dimension finie n’est pas nécessaire :
la preuve du théorème du cours est donc valide, et
l’on peut utiliser le résultat.

V CCP18

1. Soit M =
(

0 A
B 0

)
∈M2n(R). Calculer M2.

2. Justifier que si P (M) = 0, les valeurs propres de M
sont racines de P .
3. On choisit A = B−1. Justifier que M est diago-
nalisable et préciser les dimensions des sous-espaces
propres.
4. On choisit A = In = −B. Justifier que M est
diagonalisable dans C et préciser les dimensions des
sous-espaces propres.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Sans difficulté, M2 =
(

AB 0
0 BA

)
.

2. Voir le cours (si :-).

3. Dans ce cas, M2 =
(

In 0
0 In

)
= I2n, donc M est

la matrice d’une symétrie : elle est donc diagonali-
sable. De plus, en considérant des colonnes X et Y
de Mn,1(R),

M

(
X
Y

)
=
(

X
Y

)
⇐⇒

{
B−1Y = X

B X = Y

⇐⇒ Y = B X,

donc

E1(M) =
{(

X
B X

)
, X ∈Mn,1(R)

}
et dim E1(M) = n. De même,

E−1(M) =
{(

X
−B X

)
, X ∈Mn,1(R)

}
et dim E−1(M) = n.

4. Dans ce cas, M2 =
(
−In 0

0 −In

)
= −I2n, donc

X2+1 est annulateur de M . C’est un polynôme scindé
à racines simples dans C, donc M est diagonalisable
dans C. Sur le même principe que plus haut,

Ei(M) =
{(

X
iX

)
, X ∈Mn,1(C)

}
,

E−i(M) =
{(

X
−iX

)
, X ∈Mn,1(C)

}
,

et dimC Ei(M) = dimC E−i(M) = n.

VI CCP

Dans M3(R) euclidien usuel, on considère

A =

 0 1 0
0 0 1
1 0 0

 et M =

 1 1 1
0 0 0
0 0 0

 .

1. Montrer que la famille (I3, A) est orthogonale.
2. Donner le projeté orthogonal de la matrice M sur
le plan engendré par cette famille.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. On a (I3 |A) = Tr(I⊤
3 A) = Tr(A) = 0 donc I3 ⊥ A.

2. Posons P = Vect(I3, A). Pour trouver le projeté
orthogonal de M sur P, il suffit de connaitre une
base orthonormée de P. On a (I3 |I3) = Tr(I3) = 3 et
(A |A) = Tr(A⊤A) = 3. Alors une base orthonormée
de P est ( 1√

3 I3, 1√
3 A). Le projeté orthogonal de M

sur P est donc la matrice

( 1√
3 I3 |M) 1√

3 I3 + ( 1√
3 A |M) 1√

3 A = 1
3 (I3 + A).
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