Exercices de colles — dix-huitieme semaine

[1] ccp
Soit A € M,,(R) \ {0} telle que A% +9A = 0.

1. Montrer que ses valeurs propres possibles sont
0, 37 et —34. Est-elle diagonalisable dans 9, (C)?
dans 9, (R)?

2. Montrer que A n’est pas inversible si n est impair.

3. Montrer que A ne peut pas étre symétrique.

1. Nous voyons que le polynéme P = X2 + 3 X est
annulateur de A. Nous savons que les valeurs propres
de A sont parmi les racines de P, lesquelles sont
précisément 0 et +31.

Comme P est scindé a racines simples sur C, A est
diagonalisable dans 91, (C).

En revanche, P n’est pas scindé sur R, donc il faut
procéder autrement dans 9, (R). Par labsurde, si
Pon suppose A diagonalisable dans 9, (R), ses va-
leurs propres sont toutes réelles et parmi les racines
de P, donc 0 est la seule valeur propre de A. Donc A
est nulle, puisque qu’elle est semblable & la matrice
nulle. Cela contredit ’hypotheése que A était non nulle.
Donc A n’est pas diagonalisable dans 9, (R).

2. Supposons que n est impair. Le polyndéme carac-
téristique y 4 de A est de degré n, impair, donc ses
limites, infinies, en oo sont opposées : d’apres le
théoreme des valeurs intermédiaires, cela entraine
que x4 s’annule sur R. Donc A admet une valeur
propre réelle. La seule possible est 0, d’apres la ques-
tion précédente, donc A n’est pas inversible.

3. Si A était symétrique, elle serait diagonalisable
dans M, (R), et Pon a vu que c’est impossible. Donc A
ne peut étre symétrique.

[IT} ccp

1. Soient des réels ag,...,a, deux a deux distincts.
Montrer que 'on définit un produit scalaire sur R,,[X]
en posant (P|Q) = >} _, Plax) Q(ay).

2. Montrer que F = {P € R,,[X] | >"}_, P(ax) = 0}
est un espace vectoriel. Déterminer sa dimension et
son orthogonal.

3. Donner la distance de X™ a F.
1. Le caractere bilinéaire, symétrique et positif de
(-]*) ne pose pas de difficulté. Soit P tel que

n

(P|P) :Z

Alors, pour tout k € [0,n], P(ax) = 0. Comme les ay
sont distincts deux a deux, P = 0, car il est de degré
au plus n et posséde n + 1 racines. Alors, (-|-) est
défini positif, donc c¢’est un produit scalaire.

O

2. Soit P € R,[X] : clairement, P € F si et seule-
ment si Y, _1- P(ay) = 0, c’est-a-dire (1| P) = 0,
donc F = Ker(1]-) ot la forme linéaire (1]-) n’est pas
nulle. Donc F est un hyperplan de R,,[X] : c’est un
sous-espace vectoriel, de dimension n. Enfin, on vient
de voir que 1 L F donc F+ = R1 = Ry[X].

3. Alors, la distance de X™ a F est la norme de son
projeté orthogonal U sur F*. On a

(X1,
U = =
AT Zak
d’ott, comme ||1]| = vn+1,

n

gag.

k=0

1

d(X", F)=|U| = NCEST

I1I ccp

1. Etant donné un endomorphisme u d’un espace vec-
toriel £ de dimension 3, montrer qu'un plan H de FE
est stable par u si et seulement s’il existe A € K tel
que Im(u — \idg) C H.

2. Trouver les sous-espaces de R? stables par

-1 2 -3
A= -2 5 =2
-3 2 -1

1. Commencons par supposer qu’il existe A € K tel
que Im(u — Aidg) C H. Constatons qu’alors, comme
H est de dimension 2, dimIm(u — Aidg) < 2, ou
encore rg(u — Aidg) < 2 < 3 donc A € Spu. Soit
r€ H.Ona

u(z) =u(x) — Az + Az e H

car u(z) — Az € Im(u— Aidg) C H et Az € H. Ainsi,
u(H) C H.

Supposons réciproquement que u(H) C H. Alors,
en nommant D une droite supplémentaire de H, on
a F = H ® D. Dans une base adaptée a cette somme
directe, la matrice A de u est triangulaire par blocs,
c’est-a-dire qu’elle peut s’écrire sous la forme

a v|e
A= B §|¢
0 0| A

La aussi, constatons que A est alors une valeur propre
évidente de A, donc de u. En outre,

a—A ol €
A—- N3 = 15} o—X (|,
0 0 0

ot 'on voit que Im(u — Aidg) est engendré par les
colonnes de cette matrice, lesquelles ont une coordon-
née nulle selon le troisieme vecteur de la base, celui
qui engendre D : ainsi, Im(u — Aidg) C H.
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2. Clairement, I’énoncé suggere de confondre, volon-
tairement, les espaces R? et 93 1(R), et les endomor-
phismes et leurs matrices associées.

Selon la question précédente, il est raisonnable de
chercher le spectre de A. Pour x € R,

xa(z) = (=1)>det(A — x13)

—1—=z 2 -3
=—| =2 5—x -2
-3 2 —1—=x
2—x 2 -3
= — 0 5—x -2 C1+C1—Cs
-2+ 2 e
1 2 -3
=xz-2)| 0 5—=x -2
-1 2 —-1-x
1 2 -3
:(LIJ—Q) 0 5—x -2 L3+ L3+ Ly
0 4 —4 —x
=(x—-2)((b—x)(—4—17)+78)

[N~}

=(z—2)(x

—xz—12)

=(z—2)(z —4)(z+3).

Ainsi, Sp(A) = {-3,2,4}. En passant, A est diagona-
lisable, qui a trois valeurs propres distinctes.

Soit F un sous-espace vectoriel de R? stable par A.
Discutons selon sa dimension.

— SidimF = 0, F = {Ogs}, qui est bien stable
par A.

— Sidim F' =1, F est une droite stable, donc est en-
gendré par un vecteur propre. Comme il y a trois
valeurs propres distinctes, il n’y a que trois droites

stables, qui sont les trois sous-espaces propres de A.
Déterminons-les.

Soit X = (z,y,2) € R3 :

—3z+2y—3z2=0
X € Ey(A) =

<
]

— x+2=0,y=0.

—2x+4+3y—22=0
—3x+2y—32=0
—3r+2y—32=0
=0Ly<3Ly—2L,4

Ainsi, F3(A) =R(1,0,—1). De méme,

—HSr+2y—32=0
X €eEy(A) <= < 22+ y—2z=0
—3x+2y—52=0
—z + 2=0L1+ L — Ly
— ( 2x4+y—2z=0
2=0 L3 < L3 — Ly

T —

= r=zy=4z

2
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Ainsi, E4(A) =R(1,4,1). Enfin,
2242y —-32z=0
X eFE 3(A) — ¢ 2r+8y—22=0
-3z +2y+22=0
20+ 2y—3z=0
10y —52=0 Lo« Lo+ 1Ly
10y —52=0 L3z <+ 3Lz +2L,
= z=2y,x=2z.
Ainsi, E_3(A) =R(2,1,2).

— Si dim F' = 2, F est un hyperplan, et d’apres
la premiere question, F' contient 'une des trois
images Im(A —213), Im(A — 413) et Im(A + 31I3).
Mais ces images sont des plans, d’apres le théo-
reme du rang, et sachant que les noyaux correspon-
dants sont les espaces propres précédents. Donc
F est 'un de ces trois plans. Trouvons-les.

—

Omn a
-3 2 =3
A—2l;=| -2 3 —2],
-3 2 -3
donc Im(A — 213) = Vect((—3,—-2,-3),(2,3,2)).
De méme,
-5 2 =3
A4l = -2 1 -2,
-3 2 -5
donc Im(A — 415) = Vect((—5,-2,-3),(2,1,2))
et
2 2 -3
A+3I3=1-2 8 -2,
-3 2 2

donc Im(A + 313) = Vect((2, —2,—3),(2,8,2)).

Si dimF = 3, F = R3, qui est bien-sfir stable
par A.

IV
On se place dans E = % ([-1,1],R), muni du pro-
duit scalaire usuel (f|g) = fil fg.

WP

1. Montrer que les sous-ensembles

F={feB|¥re[-11], f(-z) =)}
et G={ge€ E|Vzre[-1,1], g(—x) = —g(z)}

sont des supplémentaires orthogonaux.

2. Considérons la fonction h : x +— e™*.
a. Déterminer le projeté orthogonal de h sur F.

b. Déterminer la distance d(h, F).

1. On pourrait raisonner directement par analyse-
synthese. Procédons autrement.
Considérons les applications j = —id[_1 1) et

w:E—E, fw— foj.

3
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Clairement, ¢ est linéaire. De plus,

F={feE|foj=[}
={feE|p(f)=f}=Eilp),

G={gel|goj=—g}
={9€E|p(g) =—g}=E_1(p).

Ou l'on voit que F et G sont des sous-espaces propres
de ¢, donc ce sont des sous-espaces vectoriels de F.
De plus, j o j = id[_1,1j, donc pour tout f € E,
P*(f) = pop(f) = ele(f)) = w(f o))

(fojoj=fo(joj) =/
Ainsi, ¢? = idg, donc ¢ est une symétrie de E. Alors
elle est diagonalisable et

E=FEi(p)® E-1(p)=F®G.

Enfin, si f € F, f est paire; et si g € G, g est im-
paire; donc f g est impaire et f_ll fg=0, car [-1,1]
est symétrique autour de 0. Autrement dit,

Vfe FVge G, fLg.

Cela signifie que F' 1L G.
Finalement, F' et G sont bien supplémentaires or-
thogonaux.

2.a. On sait que pour tout = € [—1,1],
e~® = ch(z) —sh(z), d'ot h = ch —sh. Or ch € F et
sh € G, donc le projeté orthogonal de h sur F' est

pF(h) =ch.

Commentaire. A proprement parler, il s’agit en fait
de la restriction ch|_y 1j.

2.b. D’apres le cours,
d(h, F') = [|[h — pp(h)[| = ||—sh|

= s = Jhsh(2) - 1.

Commentaire. A vrai dire, le cours ne s’applique pas
ici, car F' n’est pas de dimension finie. Mais puisque
E = F @ F*, la dimension finie n’est pas nécessaire :
la preuve du théoreme du cours est donc valide, et
I’on peut utiliser le résultat.

V]

1. Soit M = (

CCP18

0 A
B 0

2. Justifier que si P(M) = 0, les valeurs propres de M
sont racines de P.

3. On choisit A = B~!. Justifier que M est diago-
nalisable et préciser les dimensions des sous-espaces
propres.

4. On choisit A = I,, = —B. Justifier que M est
diagonalisable dans C et préciser les dimensions des
sous-espaces propres.

) € My, (R). Calculer M2,

3

3

AB 0

. ’ 2 _
1. Sans difficulté, M~ = ( 0 BA

)

=I5, donc M est

2. Voir le cours (si :-).

I, O
0 I,
la matrice d’une symétrie : elle est donc diagonali-
sable. De plus, en considérant des colonnes X et Y

de M, 1(R),

3. Dans ce cas, M? = (

w(¥)=(5) = {"ax v
s Y= BX,
donc
Ey(M) = {(BXX), X ei))tm(R)}

et dim F; (M) = n. De méme,

fe

E—l(M) _BX
et dimE_1(M) = n.

) , X € Smn,l(R)}

OI" —OIn> = —I5,, donc
X2+1 est annulateur de M. C’est un polynéme scindé
a racines simples dans C, donc M est diagonalisable
dans C. Sur le méme principe que plus haut,

4. Dans ce cas, M? = (

E,(M) = {(Z))(() , X € imn,l(C)},
E_(M) = {(g{) , X € zmn,l(C)},

et dime F;(M) = dim¢ E_;(M) = n.

CccCp

[VI]

Dans M3(R) euclidien usuel, on considere

0
A=10
1

O O =
o = O

1 11
eteM=(0 0 0
0 00

1. Montrer que la famille (I5, A) est orthogonale.

2. Donner le projeté orthogonal de la matrice M sur
le plan engendré par cette famille.

1. Ona (I3]|A) = Tr(I{ A) = Tr(A) = 0 donc I3 L A.

2. Posons & = Vect(I3, A). Pour trouver le projeté
orthogonal de M sur &2, il suffit de connaitre une
base orthonormée de &2. On a (I3|I3) = Tr(I3) = 3 et
(A|A) = Tr(AT A) = 3. Alors une base orthonormée

de 2 est (% I, % A). Le projeté orthogonal de M
sur & est donc la matrice
(%I3|M)%I3+(%A|M)%A: $(Is+ A).



