Exercices de colles – quatrième semaine

I————ES

Étudier l'intégrabilité sur $[0, +\infty)$ de la fonction

$$f: x \mapsto \frac{\sqrt{x}\sin(\frac{1}{x^2})}{\ln(1+x)}.$$

PRÉAMBULE. La fonction f est continue sur $]0, +\infty[$. ÉTUDE EN 0. Pour tout $x \in]0, 1]$,

$$|f(x)| \leq \frac{\sqrt{x}}{\ln(1+x)}$$
 et $\frac{\sqrt{x}}{\ln(1+x)} \sim \frac{1}{\sqrt{x}}$.

Comme $x\mapsto 1/\sqrt{x}$ est intégrable en 0, $x\mapsto \sqrt{x}/\ln(1+x)$ aussi, donc f aussi.

ÉTUDE EN $+\infty$. Pour tout $x \in [1, +\infty[$,

$$|f(x)| \sim \frac{1}{x^{3/2} \ln x} \ll \frac{1}{x^{3/2}}.$$

Comme $x\mapsto 1/x^{3/2}$ est intégrable en $+\infty,$ $x\mapsto 1/(x^{3/2}\ln x)$ aussi, donc f aussi.

CONCLUSION. Ainsi, f est bien intégrable sur $]0, +\infty[$.

TI AM

Résoudre l'équation différentielle

$$y'' + 2y' + y = e^{-x} \ln x.$$

Présentation. Il s'agit d'une équation différentielle linéaire scalaire d'ordre 2 à coefficients constants : nommons-la (E). Cependant, la fonction $x\mapsto e^{-x}\ln x$ n'est définie et continue que sur $I=\mathbb{R}_+^*$. C'est donc sur I que nous menons la résolution.

ÉQUATION HOMOGÈNE. L'équation homogène associée est (H) y''+2y'+y=0; l'équation caractéristique est (C) $r^2+2r+1=0$, dont -1 est racine double. Donc l'ensemble des solutions sur I de (H) est

$$\{x \mapsto (\alpha x + \beta) e^{-x}, \ (\alpha, \beta) \in \mathbb{R}^2 \}.$$

Commentaire. Bien-sûr, (H) peut se résoudre sur \mathbb{R} .

SOLUTION PARTICULIÈRE. Le second membre de (E) n'a pas la forme rencontrée en cours, mais faisons comme si de rien n'était.

Cherchons une solution particulière de (E) sous la forme $\psi(x) = \alpha(x) e^{-x}$, où e^{-x} est l'exponentielle du second membre et où α est une fonction deux fois dérivable sur I. En reportant dans (E), pour tout $x \in \mathbb{R}$,

$$\alpha''(x) = \ln x \text{ d'où } \alpha(x) = \frac{1}{2} x^2 \ln x - \frac{3}{4} x^2.$$

On a choisi arbitrairement les constantes d'intégrations nulles, car l'on cherche une solution particulière de (E).

Commentaire. Ici, cette démarche est en fait la méthode de variation de la constante, car $x \mapsto e^{-x}$ est une solution de (H) qui ne s'annule pas sur I.

ÉQUATION COMPLÈTE. Finalement, l'ensemble des solutions sur I de (E) est

$$\left\{x \mapsto \left(\frac{1}{2} x^2 \ln x - \frac{3}{4} x^2 + \alpha x + \beta\right) e^{-x}, (\alpha, \beta) \in \mathbb{R}^2\right\}.$$

Étudier l'intégrabilité sur $]0, +\infty[$ de la fonction

$$f: x \mapsto \frac{(x+1)^{1/4} - x^{1/4}}{x^{1/3}} \ln x.$$

Préambule. La fonction f est continue sur $]0, +\infty[$.

ÉTUDE EN 0. Au voisinage de 0,

$$f(x) \sim \frac{1}{x^{1/3}} \ln x \ll \frac{1}{x^{1/3}} \frac{1}{x^{1/3}} = \frac{1}{x^{2/3}}.$$

Or $\frac{2}{3} < 1$ donc $x \mapsto 1/x^{2/3}$ est intégrable en 0, et f l'est aussi.

ÉTUDE EN $+\infty$. Au voisinage de $+\infty$,

$$(x+1)^{1/4} = x^{1/4} \left(1 + \frac{1}{x} \right)^{1/4}$$
$$= x^{1/4} \left(1 + \frac{1}{4x} + o\left(\frac{1}{x}\right) \right)$$
$$= x^{1/4} + \frac{1}{4x^{3/4}} + o\left(\frac{1}{x^{3/4}}\right),$$

donc

$$f(x) = \frac{\frac{1}{4x^{3/4}} + o(\frac{1}{x^{3/4}})}{x^{1/3}} \ln x$$
$$\sim \frac{\ln x}{4x^{13/12}} \ll \frac{x^{1/24}}{x^{13/12}} = \frac{1}{x^{25/24}}.$$

Or $\frac{25}{24} > 1$ donc $x \mapsto 1/x^{25/24}$ est intégrable en $+\infty$, et f l'est aussi.

Conclusion. f est intégrable sur $]0, +\infty[$.

IV

Résoudre l'équation différentielle

$$xy'' - y' + 8x^3y = x^3\cos(\sqrt{2}x^2).$$

On pourra poser $t = x^2$.

NOTATIONS. Nommons (E) l'équation. Posons $I_1 = \mathbb{R}_+^*$, $I_2 = \mathbb{R}_+^*$ et $k \in \{1,2\}$. Posons encore $J = \mathbb{R}_+^*$, pour différencier deux rôles différents.

INTERVALLE DE RÉSOLUTION. Puisque 0 est un singularité de (E), on résout (E) sur l'intervalle I_k . Constatons que sur I_k , toute solution de (E) est de classe \mathscr{C}^2 .

CHANGEMENT DE VARIABLE. L'application $u:I_k\to J,\ x\mapsto t=x^2$ est bijective et \mathscr{C}^2 , ainsi que sa réciproque. Alors, à toute solution y de (E) sur I_k est associée une unique fonction $z:J\to\mathbb{R}$ de classe \mathscr{C}^2 , définie par $z=y\circ u^{-1}$, ou encore $y=z\circ u$ préférablement.

Nouvelle Équation. Soit $y:I_k\to\mathbb{R}$ une solution de (E) sur I_k . En notant $y=z\circ u$, on a $y'=u'\cdot z'\circ u$ et $y''=u''\cdot z'\circ u+u'^2\cdot z''\circ u$. Ainsi, pour tout $x\in I_k$, $y'(x)=2xz'(x^2), \,y''(x)=2z'(x^2)+4x^2z''(x^2)$ et $xy''(x)-y'(x)+8x^3y(x)=x^3\cos(\sqrt{2}x^2)$ $\iff 4x^3z''(x^2)+8x^3z(x^2)=x^3\cos(\sqrt{2}x^2).$

Comme $x \neq 0$ et que l'on a posé $t = x^2$, on peut simplifier par x^3 et l'équation

(E)
$$\forall x \in I_k$$
,
 $xy''(x) - y'(x) + 8x^3y(x) = x^3\cos(\sqrt{2}x^2)$

équivaut à l'équation

(L)
$$\forall t \in J, \ z''(t) + 2z(t) = \frac{1}{4}\cos(\sqrt{2}t).$$

RÉSOLUTION DE (E) SUR I_k . Sans difficulté, l'ensemble des solutions de (L) sur J est

$$\left\{ g_{\alpha,\beta} : J \to \mathbb{R}, \ t \mapsto \alpha \cos(\sqrt{2}t) + \beta \sin(\sqrt{2}t) + \frac{\sqrt{2}}{16}t \sin(\sqrt{2}t), \ (\alpha,\beta) \in \mathbb{R}^2 \right\}.$$

Donc l'ensemble des solutions de (E) sur I_k est

$$\{f_{k,\alpha,\beta}: I_k \to \mathbb{R}, \ t \mapsto \alpha \cos(\sqrt{2}x^2)$$

+ $\beta \sin(\sqrt{2}x^2) + \frac{\sqrt{2}}{16}x^2 \sin(\sqrt{2}x^2),$
 $(\alpha,\beta) \in \mathbb{R}^2\}.$

V

Étudier l'intégrabilité sur $]0, +\infty[$ de la fonction

$$f:t\mapsto \exp\left(-t+\ln t\,\frac{\sin t}{t}\right).$$

PRÉAMBULE. La fonction f est continue sur $]0, +\infty[$. ÉTUDE EN 0. Au voisinage de 0,

$$f(t) = e^{-t} \exp(\ln t (1 + O(t^2)))$$

= $t e^{-t} \exp(O(t^2 \ln t)) \sim t$,

donc $\lim_0 f = 0$ et f est prolongeable par continuité en 0, donc elle est intégrable en 0.

ÉTUDE EN $+\infty$. Au voisinage de $+\infty$,

$$\ln t \frac{\sin t}{t} = o(1) \text{ donc } f(t) \sim e^{-t}.$$

Or $t \mapsto e^{-t}$ est intégrable en $+\infty$ donc f aussi.

CONCLUSION. f est intégrable sur $]0, +\infty[$.

VI

1. En posant $z(\theta) = \sin \theta y(\cos \theta)$, résoudre sur]-1,1[l'équation différentielle

(E)
$$(x^2 - 1)y'' + 3xy' - 8y = 0.$$

2. Résoudre (E) complètement.

1. Pour commencer, le cosinus est bijectif et \mathscr{C}^1 de $]0, \pi[$ sur]-1, 1[, ainsi que sa réciproque. Donc on étudie z sur $]0, \pi[$. En outre, pour $x \in]-1, 1[$, on pose $x = \cos \theta$ avec $\theta \in]0, \pi[$ et (E) devient

$$-\sin^2\theta y''(\cos\theta) + 3\cos\theta y'(\cos\theta) - 8y(\cos\theta) = 0.$$

D'autre part, en dérivant $z(\theta) = \sin \theta y(\cos \theta)$, on a

$$z'(\theta) = \cos \theta y(\cos \theta) - \sin^2 \theta y'(\cos \theta),$$

$$z''(\theta) = -\sin \theta y(\cos \theta) - 3\sin \theta \cos \theta y'(\cos \theta) + \sin^3 \theta y''(\cos \theta)$$

$$= -\sin \theta (-\sin^2 \theta y''(\cos \theta)) + 3\cos \theta y'(\cos \theta))$$

$$= -\sin \theta 8y(\cos \theta) - \sin \theta y(\cos \theta)$$

$$= -9z(\theta).$$

Ainsi, $z = \theta \mapsto \alpha \cos(3\theta) + \alpha \sin(3\theta)$ avec $(\alpha, \beta) \in \mathbb{R}^2$. Or

$$\cos(3\theta) = 4\cos^{3}\theta - 3\cos\theta = 4x^{3} - 3x$$
$$\sin(3\theta) = (4\cos^{2}\theta - 1)\sin\theta = (4x^{2} - 1)\sqrt{1 - x^{2}}.$$

Alors, l'ensemble des solutions sur]-1,1[de (E) est

$$\mathscr{S}_{]-1,1[}(E) = \left\{ x \mapsto \alpha \, \frac{4x^3 - 3x}{\sqrt{1 - x^2}} + \beta \, (4x^2 - 1), \right.$$
$$(\alpha, \beta) \in \mathbb{R}^2 \right\}.$$

2. Pour résoudre (E) sur les intervalles $]-\infty,-1[$ et $]1,+\infty[$, on pourrait procéder de même avec la trigonométrie hyperbolique. Cela dit, on voit que $x\mapsto 4x^2-1$ est solution sur]-1,1[de (E): comme il s'agit d'un polynôme, il est aussi solution sur \mathbb{R} . En outre, on vérifie aisément que $x\mapsto (4x^3-3x)/\sqrt{x^2-1}$ est solution de (E) sur $]-\infty,-1[$ et $]1,+\infty[$. Alors, puisque sur ces intervalles l'espace des solutions est de dimension 2 et que l'on a deux solutions indépendantes (car l'une est un polynôme et l'autre pas), on a toutes les solutions.