
Exercices de colles – septième semaine

I CS

1. Trouver le domaine de définition de la fonction

f : x 7→
∫

]0,1[

t − 1
ln t

e−xt dt.

2. Montrer que la fonction f est de classe C 1 sur ce
domaine et lipschitzienne sur R+.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Soit x ∈ R, fixé. La fonction

h : t 7→ t − 1
ln t

e−xt

est continue sur ]0, 1[. De plus, lim0+ h = 0 et
lim1− h = e−x donc h se prolonge par continuité
sur [0, 1]. Alors elle est intégrable sur ]0, 1[.

Ainsi, f est définie sur R.
2. Posons A = R et I = ]0, 1[. Soit

g : A × I → R, (x, t) 7→ t − 1
ln t

e−xt.

◦ On vient de voir que pour tout x ∈ A, t 7→ g(x, t)
est intégrable sur I.
◦ De plus, pour tout t ∈ I, x 7→ g(x, t) est de
classe C 1 sur A, et

∀(x, t) ∈ A × I,
∂g

∂x
(x, t) = −t

t − 1
ln t

e−xt.

◦ Bien-sûr, pour tout x ∈ A, t 7→ ∂g
∂x (x, t) est conti-

nue sur I.
◦ Enfin, pour tout segment [a, b] ⊂ R et tout
(x, t) ∈ [a, b] × I,∣∣∣∣ ∂g

∂x
(x, t)

∣∣∣∣ ⩽ t
t − 1
ln t

max(1, e−a).

En effet, si x ⩾ 0, t 7→ e−xt décroit sur [0, 1] donc
e−xt ⩽ e0 = 1. Et si x < 0, cette fonction croît donc
e−xt ⩽ e−x ⩽ e−a. En notant M = max(1, e−a),
pour tout t ∈ I,

t
t − 1
ln t

M ⩽ M
t − 1
ln t

= M g(0, t),

où l’on a vu que t 7→ g(0, t) est intégrable sur I —
c’est la fonction h de la question 1 pour x = 0. Donc
∂g
∂x vérifie bien l’hypothèse de domination.

Alors
• pour tout x ∈ [a, b], t 7→ ∂g

∂x (x, t) est intégrable
sur I ;
• f est de classe C 1 sur [a, b] ; comme c’est vrai pour
tout segment [a, b] ⊂ A, f est de classe C 1 sur A ;
• et pour tout x ∈ A,

f ′(x) =
∫ 1

0

∂g

∂x
(x, t)dt = −

∫ 1

0
t

t − 1
ln t

e−xt dt.

En outre, pour x ⩾ 0,

|f ′(x)| =
∫ 1

0
t

t − 1
ln t

e−xt dt ⩽
∫ 1

0
t

t − 1
ln t

dt.

Notons k cette dernière intégrale. D’après l’inégalité
des accroissements finis, f est k-lipschitzienne sur R+.

II MP17

Déterminer le domaine de définition et la somme de

f : x 7→
+∞∑
n=1

xn

n(n + 1)(2n + 1) .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Pour n ∈ N, notons an le coefficient général. C’est
une fraction rationnelle en n, donc le rayon de conver-
gence cherché est le même que celui de la série

∑
xn,

qui vaut 1.
En outre, an ∼ 1/(2n3), donc

∑
an et

∑
(−1)n an

convergent absolument.
Le domaine de définition de f est donc [−1, 1].

2. Décomposons en éléments simples : pour n ⩾ 1,
1

n(n + 1)(2n + 1) = 1
n

+ 1
n + 1 − 4

2n + 1 .

Pour x ∈ ]−1, 1[,

f(x) =
+∞∑
n=1

xn

n
+

+∞∑
n=1

xn

n + 1 − 4
+∞∑
n=1

xn

2n + 1 .

On sait que
+∞∑
n=1

xn

n
= − ln(1 − x).

Si x ̸= 0,
+∞∑
n=1

xn

n + 1 = 1
x

+∞∑
n=1

xn+1

n + 1

= 1
x

+∞∑
n=2

xn

n
= 1

x
(− ln(1 − x) − x).

Si x > 0, x = (
√

x )2 donc
+∞∑
n=1

xn

2n + 1 =
+∞∑
n=1

(
√

x )2n

2n + 1 = 1√
x

+∞∑
n=1

(
√

x )2n+1

2n + 1

Par ailleurs, si u ∈ ]−1, 1[,
+∞∑
n=1

u2n+1

2n + 1 =
+∞∑
n=2

un

n
−

+∞∑
n=1

u2n

2n

= − ln(1 − u) − u + 1
2 ln(1 − u2)

= 1
2 ln 1 − u2

(1 − u)2 − u = 1
2 ln 1 + u

1 − u
− u,

donc
+∞∑
n=1

xn

2n + 1 = 1
2

√
x

ln 1 +
√

x

1 −
√

x
− 1.

Enfin, si x < 0, x = −(
√

−x )2 donc
+∞∑
n=1

xn

2n + 1 =
+∞∑
n=1

(−(
√

−x )2)n

2n + 1

= 1√
−x

+∞∑
n=1

(−1)n (
√

−x )2n+1

2n + 1 .
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Et si u ∈ ]−1, 1[,
+∞∑
n=1

(−1)n u2n+1

2n + 1 =
+∞∑
n=0

(−1)n u2n+1

2n + 1 − u

= Arctan u − u,

donc
+∞∑
n=1

xn

2n + 1 = 1√
−x

(Arctan(
√

−x ) −
√

−x)

= 1√
−x

Arctan(
√

−x ) − 1.

Finalement, f(0) = 0. Si x > 0,

f(x) = 3 − ln(1 − x) − 1
x

ln(1 − x)

− 2√
x

ln 1 +
√

x

1 −
√

x
.

Et si x < 0,

f(x) = 3 − ln(1 − x) − 1
x

ln(1 − x)

− 4√
−x

Arctan(
√

−x ).

III CCINP25

Considérons la fonction f : x 7→
∫ +∞

0

e−2t

x + t
dt.

1. Montrer qu’elle est définie et continue sur R∗
+.

2. Calculer lim
x→+∞

xf(x).

3. Donner un équivalent de f(x) en +∞.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Considérons A = R∗
+, I = [0, +∞[ et

g : A × I → R, (x, t) 7→ e−2t

x + t
.

Utilisons le théorème de continuité des intégrales
dépendant d’un paramètre.
◦ Pour tout t ∈ I, x 7→ g(x, t) est continue sur A,
par opérations usuelles.
◦ De même, pour tout x ∈ A, t 7→ g(x, t) est continue
sur I.
◦ Pour tout segment [a, b] ⊂ A avec 0 < a < b, et
pour tout (x, t) ∈ [a, b] × I, x + t ⩾ a donc

|g(x, t)| ⩽ 1
a e−2t,

où t 7→ e−2t est intégrable sur I car 2 > 0, donc g
vérifie l’hypothèse de domination.

Alors,
• pour tout x ∈ A, t 7→ g(x, t) est intégrable sur I ;
• f est définie et continue sur tout segment de A,
donc sur A.
2. Soit x > 0. On a

xf(x) =
∫ +∞

0

(x + t − t)e−2t

x + t
dt

=
∫ +∞

0
e−2t dt −

∫ +∞

0

te−2t

x + t
dt.

Or, pour tout t ∈ I, x + t ⩾ x donc

0 ⩽
∫ +∞

0

te−2t

x + t
dt

⩽
1
x

∫ +∞

0
te−2t dt = 1

4x
−−−−−→
x→+∞

0,

donc lim
x→+∞

xf(x) = 1
2 .

3. Par définition des équivalents, cela signifie que

f(x) ∼
x→+∞

1
2x

.

IV CCINP25

Déterminer le rayon de convergence et la somme de∑ xn

(2n)! .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rayon de convergence. On a 1
(2n)! ⩽

1
n! ; or le

rayon de convergence de
∑ xn

n! vaut +∞, donc le

rayon de convergence cherché, qui lui est supérieur,
vaut aussi +∞.
Somme. Le développement proposé ressemble à celui
de ch. Plus précisément, si x ⩾ 0, x = (

√
x )2, donc

+∞∑
n=0

xn

(2n)! =
+∞∑
n=0

(
√

x )2n

(2n)! = ch(
√

x ).

Et si x < 0, x = −(
√

−x )2, donc
+∞∑
n=0

xn

(2n)! =
+∞∑
n=0

(−1)n (
√

−x )2n

(2n)! = cos(
√

−x ).

Finalement,
+∞∑
n=0

xn

(2n)! =
{

ch(
√

x ) si x ⩾ 0,

cos(
√

−x ) si x < 0.

V CCP

Lorsque c’est possible, on pose

f(x) =
∫ 1

0

ln(1 + xt)
t

dt.

1. Montrer que l’ensemble de définition de f
contient ]−1, 1[.
2. Montrer que f est de classe C 1 sur ]0, 1[ et déter-
miner f ′.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Soit x ∈ ]−1, 1[. Pour tout t ∈ ]0, 1],
1 + xt > 1 − t ⩾ 0

donc ln(1 + xt) est bien défini. Ainsi, la fonction

h : ]0, 1] → R, t 7→ ln(1 + xt)
t

est continue sur ]0, 1]. Pour t au voisinage de 0,
h(t) ∼ x, donc h se prolonge par continuité en 0,
et est donc intégrable sur ]0, 1]. Ainsi, f est bien
définie sur ]−1, 1[.
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2. Considérons A = ]0, 1[, I = ]0, 1] et la fonction

g : A × I → R, (x, t) 7→ ln(1 + xt)
t

.

◦ Par opérations usuelles, pour tout x ∈ A,
t 7→ g(x, t) est intégrable sur I, car on reconnait h.
◦ Toujours par opérations usuelles, pour tout t ∈ I,
x 7→ g(x, t) est de classe C 1 et pour tout (x, t) ∈ A×I,

∂g

∂x
(x, t) = 1

1 + xt
.

◦ Encore par opérations usuelles, pour tout x ∈ A,
t 7→ ∂g

∂x (x, t) est continue sur I.
◦ Enfin, pour tout (x, t) ∈ A × I,∣∣∣∣ ∂g

∂x
(x, t)

∣∣∣∣ ⩽ 1,

où la fonction t 7→ 1 est bien intégrable sur I.
Alors, d’après la formule de Leibniz,

• pour tout x ∈ A, t 7→ ∂g
∂x (x, t) est intégrable sur I,

• f est de classe C 1 sur A
• et pour tout x ∈ A,

f ′(x) =
∫ 1

0

∂g

∂x
(x, t)dt =

∫ 1

0

dt

1 + xt

=
[

ln(1 + xt)
x

]1

t=0
= ln(1 + x)

x
.

VI CCP

Déterminer le rayon de convergence et la somme de∑ (−1)n x2n

2n(2n − 1) .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rayon de convergence. Comme 1
2n(2n − 1) est

une fraction rationnelle en n, le rayon de convergence
cherché vaut celui de la série entière

∑
(−1)n x2n, qui

est une série géométrique de raison −x2, donc qui
converge si et seulement si |−x2| < 1, c’est-à-dire si
|x| < 1. Ainsi, le rayon de convergence vaut 1.

Somme. Voici deux calculs de la somme.
Primitivation. On reconnait la somme de cette

série entière comme une primitive de
+∞∑
n=1

(−1)n x2n−1

2n − 1 =
+∞∑
n=0

(−1)n+1 x2n+1

2n + 1

= − Arctan x.

Donc, pour tout x ∈ ]−1, 1[, en intégrant par parties,
+∞∑
n=1

(−1)n x2n

2n(2n − 1) = −
∫ x

0
Arctan tdt

= −
[
t Arctan t

]x

0
+

∫ x

0

tdt

1 + t2

= −x Arctan x + 1
2 ln(1 + x2).

Décomposition. En utilisant les développement en
série entière usuels, pour tout x ∈ ]−1, 1[,

+∞∑
n=1

(−1)n x2n

2n(2n − 1) =
+∞∑
n=1

(−1)n

(
1

2n − 1 − 1
2n

)
x2n

= −x

+∞∑
n=1

(−1)n−1 x2n−1

2n − 1 + 1
2

+∞∑
n=1

(−1)n−1 (x2)n

n

= −x Arctan x + 1
2 ln(1 + x2).

3 3


