
Exercices de colles – huitième semaine

I CCINP25

Une urne contient 100 dés dont 25 sont pipés. Pour
chaque dé pipé, la probabilité d’obtenir le numéro 6 lors
d’un lancer vaut 1

2 .
1. On prend un dé au hasard dans l’urne, on le lance et
l’on obtient le numéro 6. Quelle est la probabilité que
ce dé soit pipé ?
2. Soit n ∈ N∗. On prend à nouveau un dé au hasard
dans l’urne, après y avoir remis le dé précédent. On lance
ce nouveau dé n fois et l’on obtient n fois le numéro 6.
Quelle est la probabilité pn que le dé soit pipé ?
3. Interpréter.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Considérons les évènements suivants :

S : « le numéro tiré est 6 » ;
T : « le dé utilisé est truqué ».
D’après la formule de Bayes, on a

P (T |S) = P (S |T )P (T )
P (S |T )P (T ) + P (S |T )P (T )

=
1
2

25
100

1
2

25
100 + 1

6
75

100

= 1
2 .

2. Soit n ∈ N∗. Considérons les évènements suivants :
Sn : « on tire n fois de suite le numéro 6 » ;
T ′ : « le nouveau dé est truqué ».
Toujours d’après la formule de Bayes,

P (T ′ |Sn) = P (Sn |T ′)P (T ′)
P (Sn |T ′)P (T ′) + P (Sn |T ′)P (T ′)

.

Comme les lancers successifs avec le nouveau dé sont
indépendants, P (Sn | T ′) = ( 1

2 )n et P (Sn | T ′) = ( 1
6 )n.

Alors

P (T ′ |Sn) =
1

2n
1
4

1
2n

1
4 + 1

6n
3
4

= 1
1 + 1

3n−1

.

3. Où l’on voit que cette probabilité tend vers 1 quand n
augmente. C’est réaliste : si l’on sait qu’il est possible
que le dé soit truqué, il est fortement probable qu’il le
soit si l’on tire successivement des 6.

II CS

1. Trouver le domaine de définition de la fonction

F : x 7→
∫ 1

0

t − 1
ln t

e−xt dt.

2. Montrer que la fonction F est de classe C 1 sur ce
domaine et lipschitzienne sur R+.
3. Étudier la suite définie par x0 ∈ R+ et pour tout
n ∈ N, xn+1 = F (xn).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Soit x ∈ R. La fonction h : t 7→ t − 1
ln t

e−xt est conti-

nue et positive sur ]0, 1[. De plus, limt→0+ h(t) = 0 et
limt→1− h(t) = e−x donc h se prolonge par continuité
sur [0, 1]. Donc elle est intégrable sur ]0, 1[.

Ainsi, F est définie sur R.

2. Posons A = R, I = ]0, 1[ et

g : A × I → R, (x, t) 7→ t − 1
ln t

e−xt.

◦ On vient de voir que pour tout x ∈ A, t 7→ g(x, t) est
intégrable sur I — où l’on aura reconnu h.
◦ De plus, pour tout t ∈ I, x 7→ g(x, t) est de classe C 1

sur A, et

∀(x, t) ∈ A × I,
∂g

∂x
(x, t) = −t

t − 1
ln t

e−xt.

◦ Bien-sûr, pour tout x ∈ A, t 7→ ∂g
∂x (x, t) est continue

sur I.
◦ Enfin, on se doute que la domination ne sera pas
possible au voisinage de −∞. Soit a ∈ A. Pour tout
(x, t) ∈ [a, +∞[ × I,∣∣∣∣∂g

∂x
(x, t)

∣∣∣∣ ⩽ t − 1
ln t

e−at = g(a, t),

où t 7→ g(a, t) est intégrable sur I, on l’a vu.
Alors

• pour tout x ∈ [a, +∞[, t 7→ ∂g
∂x (x, t) est intégrable sur

I ;
• F est de classe C 1 sur tout [a, +∞[ ⊂ A, donc sur A ;
• et pour tout x ∈ A,

F ′(x) =
∫

I

∂g

∂x
(x, t)dt = −

∫ 1

0
t

t − 1
ln t

e−xt dt.

En outre, pour x ⩾ 0,

|F ′(x)| =
∫ 1

0
t

t − 1
ln t

e−xt dt ⩽
∫ 1

0
t

t − 1
ln t

dt.

Notons k cette dernière intégrale. D’après l’inégalité des
accroissements finis, F est k-lipschitzienne sur R+.
3. Pour étudier la convergence de la suite (xn), étudions
celle de la série

∑
(xn+1 − xn).

Comme F est k-lipschitzienne, pour tout n ∈ N∗,
|xn+1 − xn| = |F (xn) − F (xn−1)| ⩽ k |xn − xn−1|,

donc par une récurrence immédiate, pour tout n ∈ N,
|xn+1 − xn| ⩽ kn |x1 − x0|.

Par concavité, pour tout t ∈ I, ln t ⩽ t − 1 ⩽ 0, donc
1 ⩾ t−1

ln t ⩾ 0 et k ⩽
∫ 1

0 tdt = 1
2 .

Ainsi, la série géométrique
∑

kn converge, donc la
série

∑
(xn+1 − xn) converge absolument, donc la suite

(xn) converge.

III CCINP25

Soit un entier n ∈ N∗. On lance simultanément n
boules indiscernables dans une boite séparée en trois
compartiments identiques.
1. Combien de compartiments peuvent rester vides à
l’issue de l’expérience ?
2. Déterminer la probabilité de l’évènement B2 « il reste
deux compartiments vides à l’issue de l’expérience ».
3. Déterminer la probabilité de l’évènement Bk « il reste
k compartiments vides à l’issue de l’expérience », pour
les autres valeurs possibles de k.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Exercices de colles – huitième semaine

1. Comme il y a au moins une boule, elle entre forcé-
ment dans un compartiment de la boite, donc les trois
compartiments ne peuvent être tous trois vides. Ainsi,
le nombre de compartiments vides après l’expérience est
2 si n = 1 ; 1 ou 2 si n = 2 ; et 0, 1 ou 2 si n ⩾ 3.
2. Explicitons l’évènement B2. Choisir exactement deux
compartiments vides revient à choisir le troisième com-
partiment, qui est occupé par les n boules. Comme les
compartiments sont identiques, il y a trois choix pos-
sibles du compartiment occupé. Et une fois qu’il est
choisi, la probabilité que les n boules y tombent est
1/3n. Alors

P (B2) = 3 1
3n

= 1
3n−1 .

3. De même, intéressons-nous à l’évènement B1. Il s’agit
de choisir le compartiment vide, nommons-le A : il y a
trois possibilités. Ensuite, les n boules se répartissent
entre les deux autres compartiments, nommons-les B et
C. Parmi ces n boules, k sont dans B, avec probabilité
1/3k, et n − k sont dans C, avec probabilité 1/3n−k. On
doit avoir k ⩾ 1 pour que B ne soit pas vide, et k ⩽ n−1
pour que C ne le soit pas. Enfin, il s’agit de choisir les k
boules qui atterrissent dans B, et il y a

(
n
k

)
possibilités

de le faire. Alors

P (B1) = 3
n−1∑
k=1

(
n

k

)
1
3k

1
3n−k

= 1
3n−1

(
n∑

k=0

(
n

k

)
− 1 − 1

)
= 2n − 2

3n−1 .

Constatons que si n = 1, P (B1) = 0, ce qui est cohérent
avec le fait que B1 ne se produit pas.

Enfin, sachant que B0, B1 et B2 forment un système
complet d’évènements,

P (B0) = 1 − P (B1) − P (B2)

= 3n−1 − 2n + 1
3n−1 .

Constatons que si n ∈ {1, 2}, P (B0) = 0.

IV MP

Considérons le fonction

f : x 7→
∫ +∞

0
e−xt 1 − cos t

t2 dt.

1. Montrer qu’elle est définie et continue sur R+.
2. Donner sa limite en +∞.
3. Montrer qu’elle est C 2 sur R∗

+ et calculer f ′′.
4. Calculer f(0).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Posons A = R+, I = R∗

+ et

g : A × I → R, (x, t) 7→ 1 − cos t

t2 e−xt.

◦ Pour tout x ∈ A, t 7→ g(x, t) est clairement continue
sur I.
◦ Pour tout t ∈ A, x 7→ g(x, t) est tout aussi clairement
continue sur A.
◦ Pour tout (x, t) ∈ A × I,

|g(x, t)| ⩽ |1 − cos t|
t2 = φ(t).

La fonction φ est continue sur I. De plus, en 0, φ(t) ∼ 1
2 ,

donc φ se prolonge en une fonction continue en 0, donc
elle est intégrable sur ]0, 1]. Et pour t ⩾ 1, φ(t) ⩽ 2

t2 ,
où t 7→ 1

t2 est intégrable sur [1, +∞[ donc φ l’est aussi.
Ainsi, φ est intégrable sur I et constitue une domination
valide de g.

Alors,
• pour tout x ∈ A, t 7→ g(x, t) est intégrable sur I,
• et f est définie et continue sur A.
2. Soit x ∈ A. On a vu que φ est prolongeable par conti-
nuité sur [0, 1] et que pour tout t ⩾ 1, φ(t) ⩽ 2

t2 ⩽ 2.
Donc φ est bornée sur I : notons M l’un de ses majorants.
Pour tout t ∈ I,

|g(x, t)| ⩽ φ(t)e−xt ⩽ M e−xt,

donc, si x > 0 (pour que t 7→ e−xt soit intégrable sur I),

|f(x)| ⩽
∫ +∞

0
|g(x, t)|dt ⩽ M

∫ +∞

0
e−xt dt = M

x
.

Ainsi, lim+∞ f = 0.
Commentaire. Où l’on voit que le théorème de conver-
gence dominée à paramètre continu n’est pas toujours
indispensable.
3. Notons A′ = R∗

+.
◦ Pour tout t ∈ I, x 7→ g(x, t) est clairement de classe
C 2 sur A′ et pour tout (x, t) ∈ A′ × I,

∂g

∂x
(x, t) = −1 − cos t

t
e−xt,

∂2g

∂x2 (x, t) = (1 − cos t)e−xt.

◦ On a déjà vu que pour tout x ∈ A′, t 7→ g(x, t) est
intégrable sur I. Pour t ∈ I, avec les notations de la
question précédente,∣∣∣∣∂g

∂x
(x, t)

∣∣∣∣ ⩽ tφ(t)e−xt.

La fonction t 7→ t φ(t) est bornée sur ]0, 1], comme
produit de fonctions qui le sont. De plus, pour t ⩾ 1,
tφ(t) ⩽ 2

t ⩽ 2, donc t 7→ tφ(t) est bornée sur I : soit
M1 l’un de ses majorants. On a donc∣∣∣∣∂g

∂x
(x, t)

∣∣∣∣ ⩽ M1 e−xt,

où t 7→ e−xt est intégrable sur I puisque x > 0. Alors
t 7→ ∂g

∂x (x, t) est aussi intégrable sur I.
◦ Bien-sûr, pour tout x ∈ A′, t 7→ ∂2g

∂x2 (x, t) est continue
sur I.
◦ Enfin, soit a ∈ A′. Pour tout (x, t) ∈ [a, +∞[ × I,∣∣∣∣∂2g

∂x2 (x, t)
∣∣∣∣ ⩽ 2e−xt ⩽ 2e−at,

où t 7→ e−at est intégrable sur I puisque a > 0, donc
∂2g
∂x2 vérifie bien l’hypothèse de domination.

Il s’ensuit que
• pour tout x ∈ [a, +∞[, t 7→ ∂2g

∂x2 (x, t) est intégrable
sur I ;
• f est C 2 sur tout [a, +∞[ ⊂ A′, donc sur A′ ;
• et pour tout x ∈ A′,

f ′′(x) =
∫ +∞

0

∂2g

∂x2 (x, t)dt

=
∫ +∞

0
(1 − cos t)e−xt dt

2 4
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=
∫ +∞

0
e−xt dt −

∫ +∞

0
cos te−xt dt

= 1
x

− Re
(∫ +∞

0
e(i−x)t dt

)
= 1

x
+ Re

(
1

i − x

)
= 1

x
− x

1 + x2 .

4. Alors, il existe (α, β) ∈ R2 tel que pour tout x ∈ A′,
f ′(x) = ln x− 1

2 ln(1+x2)+β et en intégrant par parties,
f(x) = α + β x

+ x ln x − 1
2 x ln(1 + x2) − Arctan x.

Mais l’on sait que f tend vers 0 en +∞. Par ailleurs,
lim+∞ Arctan = π

2 et quand x → +∞,

x ln x − 1
2 x ln(1 + x2) = −1

2 x ln
(

1 + 1
x2

)
∼ − 1

2x
→ 0.

Donc on doit avoir β = 0 et α = π
2 . Ainsi, pour tout

x ∈ A′.
f(x) = π

2 − Arctan x + x ln x − 1
2 x ln(1 + x2).

Enfin, nous savons que f est continue en 0, donc
f(0) = lim

x→0
f(x)

= lim
x→0

(
π
2 − Arctan x + x ln x − 1

2 x ln(1 + x2)
)

= π
2 .

Bonus. On vient de voir que

f(0) =
∫ +∞

0

1 − cos t

t2 dt = π

2 .

Grâce à une intégration par parties, dont la justification
est laissée en exercice, on a donc∫ +∞

0

sin t

t
dt =

∫ +∞

0

1 − cos t

t2 dt = π

2 .

V
On dispose d’une urne vide au départ. Le premier

jour, une personne met une boule numérotée 1 dans
l’urne, la tire, note son numéro et la remet dans l’urne
(sic). Ensuite, chaque jour, elle ajoute une boule qui
porte le numéro du jour considéré ; elle tire alors une
boule au hasard, note le numéro de cette boule et la
remet dans l’urne. Le processus se poursuit indéfiniment.
1. Montrer que pour tout x ∈ R+, on a 1 − x ⩽ e−x.
2. Soient ℓ ∈ N∗ et (Ek)1⩽k⩽ℓ une famille d’évènements
indépendants. Montrer que

P (
⋂ℓ

k=1 Ek) ⩽ exp(−
∑ℓ

k=1 P (Ek)).
3. On note Ak l’évènement « la boule numéro 10 sort
lors du ke tirage ». Quelle est sa probabilité ?
4. Quelle est la probabilité que la boule numéro 10 sorte
au moins une fois à partir du ne tirage, où n est un
entier positif fixé ?
5. Quelle est la probabilité que la boule numéro 10 sorte
une infinité de fois ?
6. Calculer la probabilité que le 10 sorte une infinité de
fois de suite.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Voici plusieurs méthodes.

Première méthode. Étudions simplement sur R+ la
fonction f : x 7→ e−x − 1 + x. Elle y est de classe C 1 et
pour tout x ⩾ 0, comme e−x ⩽ 1,

f ′(x) = −e−x + 1 ⩾ 0,

donc f croît sur R+. De plus, f(0) = 0 donc pour tout
x ⩾ 0, e−x ⩾ 1 − x.

Deuxième méthode. On sait que pour tout x ∈ R+,

e−x =
+∞∑
n=0

(−1)n xn

n! = 1 − x +
+∞∑
n=2

(−1)n xn

n! .

Nommons R1(x) ce reste. Il s’agit de la somme d’une
série alternée. Malheureusement, la suite (xn

n! )n⩾0 ne
décroit qu’à partir d’un certain rang si x ⩾ 1. Qu’à cela
ne tienne. Si x ⩾ 1, on a clairement 1 − x ⩽ 0 ⩽ e−x.
Et si x ⩽ 1, les suites (xn)n⩾0 et ( 1

n! )n⩾0 décroissent et
sont positives, donc la suite (xn

n! )n⩾0 décroit. Bien-sûr,
elle tend vers 0. Donc d’après le critère spécial des séries
alternées, la série

∑
n⩾0(−1)n xn

n! converge, ce que l’on
savait déjà, et le reste R1(x) est du signe de (−1)2 x2

2! ,
c’est-à-dire positif. Alors on a bien e−x ⩾ 1 − x.

Troisième méthode. La fonction x 7→ e−x est convexe
sur R+, puisque qu’elle est positive, de classe C 2 et égale
à sa dérivée seconde. Donc son graphe est au dessus de
ses tangentes, notamment celle à l’origine : il s’agit juste-
ment de la droite d’équation y = 1 − x. Donc l’inégalité
voulue est vraie.
2. Puisque les évènements sont indépendants, leurs com-
plémentaires le sont aussi, donc

P
( ℓ⋂

k=1
Ek

)
=

ℓ∏
k=1

P (Ek) =
ℓ∏

k=1
(1 − P (Ek))

⩽
ℓ∏

k=1
e−P (Ek) = exp

(
−

ℓ∑
k=1

P (Ek)
)

.

3. Tant que k < 10, la boule numéro 10 n’est pas encore
présente dans l’urne, donc l’évènement Ak est vide et
P (Ak) = 0.

Dès que k ⩾ 10, l’urne contient k boules, dont la
numéro 10, donc P (Ak) = 1

k .
4. Fixons un entier n ⩾ 10. En effet, lors des 9 premiers
tirages, la boule numéro 10 n’est pas dans l’urne et ne
peut donc pas être tirée.

Nommons En l’évènement « la boule numéro 10 sort
au moins une fois à partir du rang n ». Dire que la boule
numéro 10 sort au moins une fois à partir du rang n
signifie qu’il existe un tirage k ⩾ n où la boule sort,
donc

En =
+∞⋃
k=n

Ak.

À l’inverse, son évènement contraire est

En =
+∞⋂
k=n

Ak.

Puisque les tirages se font avec remise, les évènements
Ak sont indépendants. Alors, d’après la question 2, pour
tout ℓ ⩾ n,

P (
ℓ⋂

k=n

Ak) ⩽ exp
(

−
ℓ∑

k=n

P (Ak)
)

= exp
(

−
ℓ∑

k=n

1
k

)
.

3 4
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D’une part, puisque la série harmonique diverge et qu’elle
est positive,

lim
ℓ→+∞

ℓ∑
k=n

1
k = +∞

donc
lim

ℓ→+∞
exp
(

−
ℓ∑

k=n

1
k

)
= 0.

D’autre part, la suite d’évènements( ℓ⋂
k=n

Ak

)
ℓ⩾n

est clairement décroissante, donc d’après le théorème de
continuité décroissante,

lim
ℓ→+∞

P
( ℓ⋂

k=n

Ak

)
= P

( +∞⋂
k=n

Ak

)
.

Alors, d’après le théorème d’encadrement, cette proba-
bilité est nulle, d’où

P (En) = P
( +∞⋂

k=n

Ak

)
= 0,

et il s’ensuit que P (En) = 1.
5. Nommons B l’évènement « la boule numéro 10 sort
une infinité de fois ». Cela signifie que pour tout n ⩾ 10,
la boule 10 sort au moins une fois après le rang n. Donc

B =
+∞⋂

n=10
En.

Là encore, l’évènement contraire est

B =
+∞⋃

n=10
En.

D’après le théorème de sous-additivité,

P (B ) = P
( +∞⋃

n=10
En

)
⩽

+∞∑
n=10

P (En),

même si cette série diverge. Or ici, puisque pour tout
n ⩾ 10, P (En) = 0, la série converge et a pour somme 0.
Donc P (B) = 0 et P (B) = 1.
6. Soit encore n ⩾ 10. Considérons l’évènement Fn « le
10 sort à chaque fois à partir du rang n ». Par construc-
tion,

Fn =
+∞⋂
k=n

Ak.

Toujours d’après la question 2, pour tout ℓ ⩾ n,

P
( ℓ⋂

k=n

Ak

)
⩽ exp

(
−

ℓ∑
k=n

P (Ak)
)

.

Or, pour les indices k de la somme, k ⩾ n ⩾ 10, donc
1
k ⩽ 1

10 et
ℓ∑

k=n

P (Ak) =
ℓ∑

k=n

(1 − 1
k ) ⩾

ℓ∑
k=n

(1 − 1
10 )

= 9
10 (ℓ − n + 1) −−−−→

ℓ→+∞
+∞,

donc
lim

ℓ→+∞
P
( ℓ⋂

k=n

Ak

)
= 0.

Alors, d’après le théorème de continuité décroissante,

P (Fn) = P
( +∞⋂

k=n

Ak

)
= lim

ℓ→+∞
P
( ℓ⋂

k=n

Ak

)
= 0.

VI AM

1. Déterminer l’ensemble de définition de la fonction

f : x 7→
∫ π/2

0

1
1 + x cos2 t

dt.

2. Exprimer f à l’aide de fonctions usuelles.
3. Développer f en série entière.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Soient x ∈ R et g : t 7→ 1 + x cos2 t. Étudions la conti-
nuité de 1/g sur [0, π

2 ]. On a g(t) = 0 si et seulement si
cos2 t = −1/x.

Si x > −1, g ne s’annule pas sur [0, π
2 ] car

−1/x /∈ [0, 1]. Alors 1/g est continue donc intégrable sur
le segment [0, π

2 ].
Si x = −1, g s’annule en 0. Pour t proche de 0,

g(t) ∼ t2 donc 1/g(t) ∼ 1/t2 et
∫ π/2

0 1/g diverge.
Si x < −1, g s’annule en a = Arccos

√
−1/x. Alors

1/g est continue sur [0, a[∪ ]a, π
2 ]. De plus, pour t proche

de a, comme g(a) = 0,
g(t) = g′(a)(t − a) + o(t − a).

Or g′(t) = −2x sin t cos t, donc g′(a) ̸= 0 car 0 < a < π
2 .

Ainsi, toujours pour t proche de a,
1

g(t) ∼ 1
g′(a)(t − a)

et
∫ π/2

0 1/g diverge.
Finalement, f est définie sur ]−1, +∞[.

Commentaire. Le cas où x < −1 n’est pas dans le cadre
du programme, pour lequel une intégrale ne peut être
généralisée qu’au(x) bord(s) de l’intervalle d’intégration.
2. Soit x > −1. Posons u = tan t, ou t = Arctan u. L’ap-
plication φ : u 7→ Arctan u est une bijection de classe C 1

de [0, π
2 [ dans R+. Comme 1/g est intégrable sur [0, π

2 [,
1/g ◦ φ · |φ′| l’est sur R+, et le calcul suivant est valide :∫ π/2

0

dt

1 + x cos2 t
=
∫ +∞

0

1

1 + x

1 + u2

du

1 + u2

=
∫ +∞

0

du

1 + x + u2 = 1
1 + x

∫ +∞

0

du

1 +
( u√

1 + x

)2

= 1√
1 + x

[
Arctan u√

1 + x

]+∞

0
= π

2
√

1 + x
.

Commentaire. Comme le changement de variable n’est
pas affine, selon le programme l’examinateur est censé
le donner. Sinon, on peut l’imaginer avec la relation

cos2 t = 1
1 + tan2 t

.

Et si l’on est savant, on peut invoquer les régles de
Bioche — elles-mêmes hors programme : en changeant
t en t + π, l’intérieur de l’intégrale, y compris le dt, ne
change pas ; lesdites règles proposent de poser u = tan t.
3. D’après les développements en série entière usuels,
pour tout x ∈ ]−1, 1[,

f(x) = π

2 (1 + x)−1/2 = π

2

+∞∑
n=0

(
−1/2

n

)
xn

= π

2

+∞∑
n=0

(−1)n (2n)!
22n (n!)2 xn.
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