
Compléments sur les espaces vectoriels

1. Contexte.
K désigne R ou C.
n est un entier naturel non nul.
E est un K-espace vectoriel.

Somme d’espaces vectoriels
2. Contexte. Soient un entier p ⩾ 2 et des sous-
espaces vectoriels E1, . . . , Ep de E.

Produit
3. Définition. Le produit de E1, . . . , Ep est l’en-

semble noté E1 × · · · × Ep ou
p∏

i=1
Ei des p-uplets

(x1, . . . , xp) où xi ∈ Ei pour i ∈ [[1, p]].

4. Théorème. Le produit
p∏

i=1
Ei est un sous-espace

vectoriel de Ep.
5. Théorème. L’application

φ :
p∏

i=1
Ei → E, (x1, . . . , xp) 7→

p∑
i=1

xi

est linéaire.
6. Théorème. Si E1, . . . , Ep sont de dimensions fi-
nies, leur produit l’est aussi et l’on a

dim
(

p∏
i=1

Ei

)
=

p∑
i=1

dim(Ei).

Somme
7. Définition. La somme de E1, . . . , Ep est l’en-

semble noté E1 + · · · + Ep ou
p∑

i=1
Ei des sommes

x1 + · · · + xp où (x1, . . . , xp) ∈
p∏

i=1
Ei.

Autrement dit,
p∑

i=1
Ei =

{
x ∈ E

∣∣ ∃(x1, . . . , xp) ∈
p∏

i=1
Ei, x =

p∑
i=1

xi

}
.

8. Théorème. La somme
p∑

i=1
Ei est un sous-espace

vectoriel de E.
9. Théorème. Si E1, . . . , Ep sont de dimensions fi-
nies, leur somme l’est aussi et l’on a

dim
(

p∑
i=1

Ei

)
⩽

p∑
i=1

dim(Ei).

Somme directe

10. Définition. La somme
p∑

i=1
Ei est directe si tous

ses éléments se décomposent de façon unique comme
somme d’éléments des Ei. Dans ce cas, on la note

E1 ⊕ · · · ⊕ Ep ou
p⊕

i=1
Ei.

11. Théorème. Il est équivalent de dire :

(i) la somme
p∑

i=1
Ei est directe ;

(ii) ∀x ∈
p∑

i=1
Ei,

∃!(x1, . . . , xp) ∈
p∏

i=1
Ei, x =

p∑
i=1

xi ;

(iii) φ est injective ;

(iv) ∀(x1, . . . , xp) ∈
p∏

i=1
Ei,

p∑
i=1

xi = 0E =⇒ ∀i ∈ [[1, p]], xi = 0E .

12. Définition. Deux sous-espaces vectoriels F et G
de E sont supplémentaires si E = F ⊕ G.

13. Théorème. Supposons E1, . . . , Ep de dimensions

finies. La somme
p∑

i=1
Ei est directe si et seulement si

dim
(

p∑
i=1

Ei

)
=

p∑
i=1

dim(Ei).

Bases adaptées

14. Contexte. Supposons ici que E est de dimen-
sion finie.

15. Définition. Soit F un sous-espace vectoriel de E.
Une base de E adaptée à F est une base obtenue en
complétant une base de F .

16. Définition. Si E =
p⊕

i=1
Ei, une base de E adap-

tée à cette somme directe est une base obtenue en
concaténant des bases de chaque Ei.
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Hyperplans
17. Définition. Une forme linéaire est une applica-
tion linéaire de E dans K.
18. Théorème. Une forme linéaire φ de E est soit
nulle, soit surjective.
19. Définition. Un sous-espace vectoriel de E est
un hyperplan de E s’il vérifie l’une des propositions
équivalentes suivantes.
20. Théorème. Soit H un sous-espace vectoriel de E.
Il est équivalent de dire :

(i) ∃φ ∈ L(E,K) ∖ {0L(E,K)}, H = Ker φ ;
(ii) ∃e ∈ E ∖ {0E}, E = H ⊕ Ke ;
(iii) ∀e ∈ E ∖ H, E = H ⊕ Ke.

Si de plus E est de dimension finie, il est aussi équi-
valent de dire :
(iv) dim(H) = dim(E) − 1.

Sous-espaces stables
21. Contexte. Soient u un endomorphisme de E,
et F un sous-espace vectoriel de E.
22. Définition. F est stable par u si u(F ) ⊂ F .
Dans ce cas, l’endomorphisme de F

u∥F : F → F, x 7→ u(x)
s’appelle l’endomorphisme induit par u sur F .
23. Théorème. F est stable par u si et seulement
s’il existe une base de E adaptée à F dans laquelle
la matrice de u est triangulaire supérieure par blocs.
24. Théorème. Soient E1, . . . , Ep des sous-espaces

vectoriels de E tels que E =
p⊕

i=1
Ei.

Les Ei sont tous stables par u si et seulement s’il
existe une base de E adaptée à la somme directe dans
laquelle la matrice de u est diagonale par blocs.
25. Théorème. Si deux endomorphismes de E com-
mutent, alors le noyau et l’image de l’un sont stables
par l’autre.

Polynômes de matrices et
d’endomorphismes

26. Définitions. Soient A ∈ Mn(K) et P ∈ K[X].
Posons A0 = In et pour tout k ∈ N, Ak+1 = AAk.
Si P = 0K[X], posons P (A) = 0Mn(K).

Sinon, écrivons P =
deg(P )∑

k=0
ak Xk, et posons

P (A) =
deg(P )∑

k=0
ak Ak.

Cette matrice s’appelle un polynôme en A.

27. Théorème. Pour tous (P, Q)∈(K[X])2 et λ∈K,

(P + λQ)(A) = P (A) + λQ(A),
(P Q)(A) = P (A)Q(A).

28. Corollaire. Les polynômes en A commutent.

29. Définition. Un polynôme annulateur de A est
un polynôme P ∈ K[X] tel que P (A) = 0Mn(K).

30. Définitions. Soient u ∈ L(E) et P ∈ K[X].
Posons u0 = idE et pour tout k ∈N, uk+1 =u◦uk.
Si P = 0K[X], posons P (u) = 0L(E).

Sinon, écrivons P =
deg(P )∑

k=0
ak Xk, et posons

P (u) =
deg(P )∑

k=0
ak uk.

Cet endomorphisme s’appelle un polynôme en u.

31. Théorème. Pour tous (P, Q)∈(K[X])2 et λ∈K,

(P + λQ)(u) = P (u) + λQ(u),
(P Q)(u) = P (u) ◦ Q(u).

32. Corollaire. Les polynômes en u commutent.

33. Définition. Un polynôme annulateur de u est
un polynôme P ∈ K[X] tel que P (u) = 0L(E).
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