Compléments sur les séries numériques

1. Contexte. Considérons une suite numérique $(u_n)_{n\in\mathbb{N}}$, c'est-à-dire une suite réelle ou complexe.

Absolue convergence

- 2. Définitions. La série $\sum u_n$ est absolument convergente ou converge absolument si la série $\sum |u_n|$ converge. On dit aussi que la suite (u_n) est sommable.
- 3. Théorème. Si la série $\sum u_n$ converge absolument, alors elle converge. La réciproque est fausse.
- 4. Théorème : règle de d'Alembert.

SUPPOSONS QUE

• $u_n \neq 0$ à partir d'un certain rang;

$$\circ \lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \ell \in [0, +\infty].$$

- si $\ell < 1$, la série $\sum u_n$ converge absolument; si $\ell > 1$, la série $\sum u_n$ diverge grossièrement; si $\ell = 1$, la règle ne conclut pas.
- 5. Contexte. Considérons une seconde suite numérique $(v_n)_{n\in\mathbb{N}}$.
- 6. DÉFINITION. Le produit de Cauchy des deux séries $\sum u_n$ et $\sum v_n$ est la série de terme général

$$\sum_{p+q=n} u_p \, v_q = \sum_{p=0}^n u_p \, v_{n-p} = \sum_{q=0}^n u_{n-q} \, v_q.$$

7. Théorème. Supposons les deux séries $\sum u_n$ et $\sum v_n$ absolument convergentes. Alors leur produit de Cauchy converge absolument et

$$\sum_{n=0}^{+\infty} \left(\sum_{p+q=n} u_p \, v_q \right) = \left(\sum_{p=0}^{+\infty} u_p \right) \left(\sum_{q=0}^{+\infty} v_q \right).$$

8. FORMULE DE STIRLING. Quand n est grand,

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

Semi-convergence

- 9. Définition. La série $\sum u_n$ est semi-convergente si elle converge sans converger absolument.
- 10. Contexte. Considérons dorénavant que la suite (u_n) est réelle.
- 11. Définition. La série $\sum u_n$ est alternée si la suite de terme général $(-1)^n u_n$ est de signe constant.
- 12. Théorème spécial des séries alternées.

Supposons que

- o la série $\sum u_n$ est alternée;
- o la suite de terme général $|u_n|$ décroit vers 0.

Alors

- la série $\sum u_n$ converge;
- pour tout $n \in \mathbb{N}$, $|R_n| \leq |u_{n+1}|$, où R_n est le reste d'ordre n de la série;
- pour tout $n \in \mathbb{N}$, R_n est du signe de u_{n+1} ; en particulier, la somme $\sum_{n=0}^{+\infty} u_n$ est du signe de u_0 .