
Espaces vectoriels normés

Normes
1. Contexte. Soit E un K-espace vectoriel.
2. Définitions. Une application N : E → R+ est
une norme sur E si elle possède les propriétés sui-
vantes :

∀x ∈ E, N(x) = 0 ⇐⇒ x = 0E ;(séparation)

∀x ∈ E, ∀λ ∈ K, N(λx) = |λ|N(x) ;
(homogénéité positive)

∀(x, y) ∈ E2, N(x + y) ⩽ N(x) + N(y).
(inégalité triangulaire)

Le couple (E, N) est un espace vectoriel normé.
3. Notation. Souvent, on note la norme ∥·∥E (ou
∥·∥ s’il n’y a pas d’ambigüité), et l’espace vectoriel
normé E au lieu de (E, ∥·∥).
4. Théorème : seconde inégalité triangulaire.

∀(x, y) ∈ E2,
∣∣∥x∥ − ∥y∥

∣∣ ⩽ ∥x − y∥.

5. Définitions. Dans l’espace vectoriel normé E, le
réel d(x, y) = ∥y−x∥ est la distance entre les vecteurs
x et y de E. La fonction

d : E2 → R+, (x, y) 7→ d(x, y)
est la distance associée à la norme.

Éléments de topologie
6. Contexte. Soient (E, ∥·∥) un espace vectoriel
normé et A une partie quelconque de E.

Boules
7. Définitions. Soient a ∈ E et r ∈ R+.

Si r>0, la boule ouverte de centre a et de rayon r est
B(a, r) = {x ∈ E | ∥x − a∥ < r}.

La boule fermée de centre a et de rayon r est
BF (a, r) = {x ∈ E | ∥x − a∥ ⩽ r}.

La sphère de centre a et de rayon r est
S(a, r) = {x ∈ E | ∥x − a∥ = r}.

8. Remarque. Si E est un plan vectoriel, on parle
plutôt de disque et de cercle.

Ouverts
9. Définition. Un point a ∈ A est intérieur à A s’il
existe une boule ouverte centrée en a incluse dans A :

∃r > 0, B(a, r) ⊂ A.

10. Définition. A est une partie ouverte ou un ou-
vert de E si tous ses points lui sont intérieurs :

∀a ∈ A, ∃r > 0, B(a, r) ⊂ A.

11. Théorème. Une boule ouverte est un ouvert.
12. Théorème. Toute réunion et toute intersection
finie d’ouverts est un ouvert.

Fermés
13. Définitions. Un point a ∈ E est adhérent à A
si toute boule ouverte centrée en a rencontre A :

∀r > 0, B(a, r) ∩ A ̸= ∅.

L’ensemble de ces points est l’adhérence de A :

Adh(A) = {x ∈ E | ∀r > 0, B(x, r) ∩ A ̸= ∅}.

14. Définition. A est une partie fermée ou un fermé
de E si elle est égale à son adhérence : A = Adh(A).

15. Définition. A est une partie dense de E ou est
dense dans E si E est l’adhérence de A : E = Adh(A).

16. Théorème. Une boule fermée est un fermé.

17. Théorème. A est un fermé si et seulement si son
complémentaire E ∖ A est un ouvert.

18. Théorème. Toute intersection et toute réunion
finie de fermés est un fermé.

Bornés
19. Définition. A est une partie bornée ou un borné
de E si

∃M ⩾ 0, ∀x ∈ A, ∥x∥ ⩽ M.

20. Théorème. Une boule est un borné.

21. Théorème. Il est équivalent de dire :

— A est bornée ;
— ∃M ⩾ 0, ∀(x, y) ∈ A2, ∥x − y∥ ⩽ M ;
— A est incluse dans une boule de E.

22. Définition. Soit X un ensemble. Une applica-
tion f : X → E est bornée si l’ensemble f(X) l’est :

∃M ⩾ 0, ∀x ∈ X, ∥f(x)∥ ⩽ M.

Convexes
23. Définition. A est une partie convexe ou un
convexe de E si

∀(x, y) ∈ A2, ∀t ∈ [0, 1], (1 − t)x + ty ∈ A.

24. Théorème. Une boule est un convexe.

Normes équivalentes
25. Définition. Deux normes N1 et N2 sur E sont
équivalentes si

∃(α, β) ∈ (R∗
+)2, ∀x ∈ E, αN1(x) ⩽ N2(x) ⩽ β N1(x).

26. Théorème. Si E est de dimension finie, toutes
les normes sur E sont équivalentes.

27. Théorème. Les éléments topologiques associés
à deux normes équivalentes sont les mêmes.
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Espaces vectoriels normés

Suites
28. Contexte. Soit (E, ∥·∥) un espace vectoriel
normé.
29. Définitions. Une suite (xk)k∈N de E est conver-
gente ou converge dans E si

∃ℓ ∈ E, ∀ε > 0, ∃K ∈ N, ∀k ∈ N,

k ⩾ K =⇒ ∥xk − ℓ∥ ⩽ ε.

Alors le vecteur ℓ est unique et s’appelle la limite de
la suite (xk)k∈N.

Une suite qui ne converge pas est une suite diver-
gente ou qui diverge.
30. Théorème. Toute suite convergente est bornée.
31. Théorème. Étant donnée une suite convergente
(xk)k∈N, de limite ℓ, toute suite extraite de (xk)k∈N
converge, vers ℓ.
32. Théorème. Soient (xk)k∈N et (x′

k)k∈N deux
suites convergentes de limites ℓ et ℓ′ et soit λ ∈ K.
La suite (xk + x′

k)k∈N converge vers ℓ + ℓ′ et la suite
(λxk)k∈N converge vers λℓ.
33. Théorème : caractérisation séquentielle
de l’adhérence. Soient A ⊂ E et a ∈ E :
a ∈ Adh(A) si et seulement s’il existe une suite d’élé-
ments de A qui converge vers a.
34. Corollaire : caractérisation séquentielle
des fermés. Une partie A de E est fermée si et seule-
ment si, pour toute suite d’éléments de A, si la suite
converge vers un vecteur ℓ ∈ E, alors ℓ ∈ A.
35. Théorème. Si E est de dimension finie, la conver-
gence des suites ne dépend pas de la norme choisie. En
particulier, si B est une base de E, une suite (xk)k∈N
converge dans E si et seulement si les suites numé-
riques des coordonnées des xk dans B convergent.

Limite en un point
36. Contexte. Soient deux espaces vectoriels nor-
més (E, ∥·∥E) et (F, ∥·∥F ), une partie A ⊂ E, un
point a ∈ Adh(A) et une fonction f : A → F .
37. Définitions. La fonction f admet une limite
en a, ou converge en a si

∃ℓ ∈ F, ∀ε > 0, ∃η > 0, ∀x ∈ A,

∥x − a∥E ⩽ η =⇒ ∥f(x) − ℓ∥F ⩽ ε.

Alors le vecteur ℓ est unique et s’appelle la limite de
la fonction f en a. On dit que f converge, ou tend,
vers ℓ en a.

Si la fonction f ne converge pas, elle diverge.
38. Théorème : caractérisation séquentielle
de la limite. La fonction f tend vers ℓ en a si et
seulement si pour toute suite (xk)k∈N ∈ AN tendant
vers a, la suite (f(xk))k∈N tend vers ℓ.

39. Théorème. Supposons que f tende vers ℓ en a.
Soient une seconde fonction g : A → F qui tende
vers ℓ′ en a et λ ∈ K. La fonction λf + g tend vers
λℓ + ℓ′ en a.

40. Théorème. Considérons un troisième espace vec-
toriel normé (G, ∥·∥G), une partie B ⊂ F et une fonc-
tion g : B → G. Supposons que f(A) ⊂ B, que f
tende vers ℓ en a, que ℓ ∈ Adh(B) et que g tende vers
ℓ′ en ℓ. Alors g ◦ f : A → G tend vers ℓ′ en a.

41. Théorème. Supposons F de dimension finie p
et soit C une base de F . La fonction f tend vers ℓ
en a si et seulement si pour tout i ∈ [[1, p]], la fonction
fi : A → K, qui à tout x de A associe la ie coordon-
née de f(x) dans C , tend vers la ie coordonnée de ℓ
dans C .

Continuité
42. Contexte. Soient toujours deux espaces vecto-
riels normés (E, ∥·∥E) et (F, ∥·∥F ), une partie A ⊂ E
et une fonction f : A → F .

43. Définitions. Soit a ∈ A. La fonction f est conti-
nue en a si elle converge vers f(a) en a.

La fonction f est continue sur A si elle est continue
en tout point de A.

44. Théorème. Soient une seconde fonction
g : A → F , λ ∈ K et a ∈ A. Si f et g sont continues
en a, respectivement sur A, alors λf + g l’est aussi.

45. Définition. La fonction f est lipschitzienne
sur A si

∃k ∈ R+, ∀(x, y) ∈ A2, ∥f(x)−f(y)∥F ⩽ k∥x−y∥E .

46. Théorème. Si f est lipschitzienne sur A, elle est
continue sur A. La réciproque est fausse.

47. Théorème. Si E est de dimension finie, toute
application linéaire de L(E, F ) est continue sur E.

48. Théorème. Supposons que E soit de dimension
finie, que F = R, que A soit fermée et bornée et que
f soit continue sur A. Alors f est bornée sur A et
atteint ses bornes.

49. Théorème. Supposons que f soit continue sur E.
Alors l’image réciproque par f de tout ouvert, respec-
tivement fermé, de F est un ouvert, respectivement
fermé, de E. En particulier, si F = R, alors
— {x ∈ E | f(x) > 0} est ouvert ;
— {x ∈ E | f(x) ⩾ 0} et {x ∈ E | f(x) = 0} sont

fermés.

50. Théorème. Si n est une entier naturel non nul,
toute fonction polynomiale sur Kn y est continue.
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