Équations différentielles linéaires scalaires

1. Notations.

Comme à l'accoutumée, $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$. I est un intervalle quelconque de $\mathbb R$.

Premier ordre

2. Contexte. Considérons des fonctions a, b et c continues de I dans \mathbb{K} .

DÉFINITIONS

3. Une équation différentielle linéaire scalaire d'ordre 1 est une équation de la forme

$$(E) ay' + by = c,$$

où $y:I\to\mathbb{K}$ est une fonction inconnue supposée dérivable sur I.

4. Une solution de (E) sur I est une fonction dérivable $\varphi:I\to\mathbb{K}$ telle que

$$\forall x \in I, \ a(x)\varphi'(x) + b(x)\varphi(x) = c(x).$$

Notons $\mathcal{S}_I(E)$ leur ensemble.

5. Toute racine de a est une singularit'e de (E). Si l'intervalle I n'en contient aucune, l'équation (E) équivaut à l'équation

$$(E_1) y' + \frac{b}{a}y = \frac{c}{a},$$

dite forme normale de (E), de sorte que $\mathscr{S}_I(E) = \mathscr{S}_I(E_1)$.

- 6. Remarque. On peut toujours considérer que l'intervalle I ne contient aucune singularité de E, en le restreignant si nécessaire.
- 7. Une condition initiale est un couple $(x_0, y_0) \in I \times \mathbb{K}$. Le problème de Cauchy associé est le problème

$$\begin{cases} ay' + by = c, \\ y(x_0) = y_0, \end{cases}$$

où l'on recherche une solution φ de (E) sur I telle que $\varphi(x_0) = y_0$.

8. L'équation différentielle linéaire scalaire homogène, ou sans second membre, associée à (E) est l'équation

$$(H) ay' + by = 0.$$

9. Remarque. Naturellement, tout le vocabulaire précédent s'applique à $({\cal H}).$

RÉSOLUTIONS

10. CONTEXTE. Désormais, considérons une équation différentielle linéaire scalaire d'ordre 1 sous forme normale,

$$(E) y' + ay = b,$$

et son équation homogène associée,

$$(H) y' + ay = 0.$$

11. Théorème de Cauchy-Lipschitz. Pour toute condition initiale $(x_0,y_0)\in I\times \mathbb{K},$ le problème de Cauchy

$$\begin{cases} y' + ay = b, \\ y(x_0) = y_0, \end{cases}$$

admet une unique solution sur I

12. THÉORÈME. $\mathcal{S}_I(H)$ est une droite vectorielle. Précisément, en nommant A une primitive de a sur I,

$$\mathcal{S}_I(H) = \mathbb{K}e^{-A} = \text{Vect}(e^{-A})$$
$$= \{x \mapsto \alpha e^{-A(x)}, \ \alpha \in \mathbb{K}\}.$$

13. Théorème. $\mathscr{S}_I(E)$ est une droite affine, dirigée par $\mathscr{S}_I(H)$. Précisément, en nommant ψ une solution de (E) sur I,

$$\mathcal{S}_I(E) = \psi + \mathcal{S}_I(H)$$

= $\{x \mapsto \psi(x) + \alpha e^{-A(x)}, \ \alpha \in \mathbb{K}\}.$

Pratique

14. DÉMARCHE. On veut résoudre (E) sur I.

D'abord, on résout (H) sur I. Il « suffit » de déterminer une primitive A de a sur I. Les solutions de (H) sur I sont alors exactement les fonctions $x \mapsto \alpha e^{-A(x)}$, où $\alpha \in \mathbb{K}$.

Ensuite, on « trouve » une solution ψ de (E) sur I, dite solution particulière de (E) sur I. Les solutions de (E) sur I sont alors exactement les sommes de cette solution particulière et d'une solution quelconque de (H) sur I: ce sont les fonctions $x \mapsto \psi(x) + \alpha e^{-A(x)}$, où $\alpha \in \mathbb{K}$.

15. MÉTHODE DE VARIATION DE LA CONSTANTE.

Cherchons ψ sous la forme $\psi = \alpha e^{-A}$, en considérant que α est, non pas une constante, mais une fonction dérivable de I dans \mathbb{K} . En reportant cette expression dans (E), on trouve l'équation $\alpha' e^{-A} = b$, d'où l'on tire α' , dont il « reste » ensuite à déterminer une primitive α , pour enfin en déduire ψ .

Second ordre

16. Contexte. Considérons des fonctions a, b, c et d continues de I dans \mathbb{K} .

DÉFINITIONS

17. Une équation différentielle linéaire scalaire d'ordre 2 est une équation de la forme

$$(E) ay'' + by' + cy = d,$$

où $y:I\to\mathbb{K}$ est une fonction inconnue supposée deux fois dérivable sur I.

18. Une solution de (E) sur I est une fonction deux fois dérivable $\varphi:I\to\mathbb{K}$ telle que

$$\forall x \in I, \ a(x)\varphi''(x) + b(x)\varphi'(x) + c(x)\varphi(x) = d(x).$$

Notons $\mathcal{S}_I(E)$ leur ensemble.

19. Toute racine de a est une singularit'e de (E). Si l'intervalle I n'en contient aucune, l'équation (E) équivaut à l'équation

$$(E_1) y'' + \frac{b}{a}y' + \frac{c}{a}y = \frac{d}{a},$$

dite forme normale de (E), de sorte que $\mathscr{S}_I(E) = \mathscr{S}_I(E_1)$.

- 20. Remarque. On peut toujours considérer que l'intervalle I ne contient aucune singularité de E, en le restreignant si nécessaire.
- 21. Une condition initiale est un triplet $(x_0, y_0, y_1) \in I \times \mathbb{K} \times \mathbb{K}$. Le problème de Cauchy associé est le problème

$$\begin{cases} ay'' + by' + cy = d, \\ y(x_0) = y_0, \ y'(x_0) = y_1, \end{cases}$$

où l'on recherche une solution φ de (E) sur I telle que $\varphi(x_0) = y_0$ et $\varphi'(x_0) = y_1$.

22. L'équation différentielle linéaire scalaire homogène, ou sans second membre, associée à (E) est l'équation

$$(H) ay'' + by' + cy = 0.$$

23. Remarque. Naturellement, tout le vocabulaire précédent s'applique à (H).

RÉSOLUTIONS

24. CONTEXTE. Désormais, considérons une équation différentielle linéaire scalaire d'ordre 2 sous forme normale,

$$(E) y'' + ay' + by = c,$$

et son équation homogène associée,

$$(H) y'' + ay' + by = 0.$$

25. Théorème de Cauchy-Lipschitz. Pour toute condition initiale $(x_0,y_0,y_1)\in I\times \mathbb{K}\times \mathbb{K}$, le problème de Cauchy

$$\begin{cases} y'' + ay' + by = c, \\ y(x_0) = y_0, \ y'(x_0) = y_1, \end{cases}$$

admet une unique solution sur I.

- 26. Théorème. $\mathcal{S}_I(H)$ est un plan vectoriel.
- 27. DÉFINITION. Toute base (φ_1, φ_2) de $\mathscr{S}_I(H)$ est un système fondamental de (H).
- 28. Théorème. $\mathscr{S}_I(E)$ est un plan affine, dirigé par $\mathscr{S}_I(H)$. Précisément, en nommant ψ une solution de (E) sur I, $\mathscr{S}_I(E) = \psi + \mathscr{S}_I(H)$.

Pratique

29. DÉMARCHE. On veut résoudre (E) sur I.

D'abord, on résout (H) sur I. Il « suffit » de déterminer un système fondamental (φ_1, φ_2) de (H). Les solutions de (H) sur I sont alors exactement les fonctions $\alpha_1 \varphi_1 + \alpha_2 \varphi_2$, où $(\alpha_1, \alpha_2) \in \mathbb{K}^2$.

Ensuite, on « trouve » une solution ψ de (E) sur I, dite solution particulière de (E) sur I; les solutions de (E) sur I sont alors exactement les sommes de cette solution particulière et d'une solution quelconque de (H) sur I: ce sont les fonctions $\psi + \alpha_1 \varphi_1 + \alpha_2 \varphi_2$, où $(\alpha_1, \alpha_2) \in \mathbb{K}^2$.

30. MÉTHODE DE VARIATION DE LA CONSTANTE.

Supposons connue une solution φ_0 de (H) sur I, qui ne s'annule pas sur I. Cherchons les solutions φ de (E) sur I sous la forme $\varphi = \alpha \varphi_0$, en considérant que α est, non pas une constante, mais une fonction deux fois dérivable de I dans \mathbb{K} . En reportant cette expression dans (E), on obtient une équation différentielle d'ordre 1, d'inconnue α' ; on la résout pour trouver α' ; puis on en détermine les primitives α ; et l'on en déduit enfin les solutions φ de (E) sur I.

Cas particuliers

31. Contexte. Dorénavant, supposons que $I = \mathbb{R}$, que a et b sont constantes, et qu'il existe $P \in \mathbb{K}[X]$ et $s \in \mathbb{K}$ tels que

$$\forall x \in \mathbb{R}, \ c(x) = P(x)e^{sx}.$$

32. DÉFINITION. L'équation caractéristique associée à (E) ou à (H) est l'équation

$$(C) r^2 + ar + b = 0,$$

d'inconnue $r \in \mathbb{K}$. Nommons λ et μ ses racines.

- 33. Théorème. Soit φ une solution de (H) sur \mathbb{R} .
 - Si $\lambda \neq \mu$, alors

$$\exists ! (\alpha, \beta) \in \mathbb{K}^2, \forall x \in \mathbb{R}, \ \varphi(x) = \alpha e^{\lambda x} + \beta e^{\mu x}.$$

— Si $\lambda = \mu$, alors

$$\exists ! (\alpha, \beta) \in \mathbb{K}^2, \forall x \in \mathbb{R}, \ \varphi(x) = (\alpha x + \beta) e^{\lambda x}.$$

— Si $\mathbb{K} = \mathbb{R}$ et que λ et μ sont complexes conjugués, alors, en notant $\lambda = \rho + i\omega$ avec $\omega \neq 0$,

$$\exists ! (\alpha, \beta) \in \mathbb{R}^2, \forall x \in \mathbb{R},$$

$$\varphi(x) = e^{\rho x} (\alpha \cos(\omega x) + \beta \sin(\omega x)).$$

34. THÉORÈME. En notant $m \in \{0, 1, 2\}$ la multiplicité de s comme racine de (C), on peut chercher une solution particulière ψ de (E) sur \mathbb{R} sous la forme

$$\psi: x \mapsto Q(x) e^{sx}$$
,

où $Q \in \mathbb{K}[X]$ avec $\deg(Q) = \deg(P) + m$.