
Espaces probabilisés

Ensembles dénombrables
1. Définitions. Un ensemble E est dénombrable, res-
pectivement au plus dénombrable, s’il est en bijection
avec N, respectivement avec une partie de N.

On peut alors décrire E sous la forme

E = {xi, i ∈ I},

où I = N, respectivement I ⊂ N.

2. Exemples. Z, N2 et Q sont dénombrables.
R et C ne le sont pas.

3. Définitions. Soit (An)n∈N une suite de parties
d’un ensemble E. La réunion des An est l’ensemble

+∞⋃
n=0

An = {x ∈ E | ∃n ∈ N, x ∈ An}.

Si l’on suppose que les An sont deux à deux disjoints,
on parle de réunion disjointe, et on la note

+∞⊔
n=0

An.

L’intersection des An est l’ensemble
+∞⋂
n=0

An = {x ∈ E | ∀n ∈ N, x ∈ An}.

Familles sommables
4. Contexte. Soit I un ensemble au plus dénom-
brable, dont les éléments s’appellent des indices.

5. Définition. Dans un ensemble E, une famille
indéxée par I est une application∣∣∣∣ I −→ E

i 7−→ xi,

notée (xi)i∈I .

6. Définition. À une famille (xi)i∈I de [0, +∞], on
sait associer sa somme,∑

i∈I

xi ∈ [0, +∞].

7. Définitions.
Une famille (xi)i∈I de [0, +∞] est sommable si sa

somme est finie : ∑
i∈I

xi < ∞.

Une famille (xi)i∈I de C est sommable si la famille
(|xi|)i∈I l’est.

8. Théorème : sommation par paquets. Étant
donnés un découpage de I en paquets, sous la forme

I =
⊔

n∈N
In,

et une famille sommable (xi)i∈I de C, on peut sommer
par paquets, c’est-à-dire

∑
i∈I

xi =
∑

n∈N

( ∑
i∈In

xi

)
.

9. Théorème de Fubini. Considérons un second
ensemble d’indices J au plus dénombrable.

Une famille (xi,j)(i,j)∈I×J de C est sommable si et
seulement si

— pour tout i ∈ I, la famille (xi,j)j∈J est som-
mable,

— la famille
( ∑

j∈J

|xi,j |
)

i∈I

est sommable.

Dans ce cas,

∑
(i,j)∈I×J

xi,j =
∑
i∈I

( ∑
j∈J

xi,j

)
=

∑
j∈J

( ∑
i∈I

xi,j

)
.

Espaces probabilisables
10. Contexte. Soit un ensemble Ω quelconque, ap-
pelé univers.

11. Définitions. Une tribu sur Ω est un ensemble
A ⊂ P(Ω) tel que

— Ω ∈ A ;
— ∀A ∈ A , A ∈ A ;

— ∀(An)n∈N ∈ A N,
+∞⋃
n=0

An ∈ A .

Le couple (Ω, A ) est un espace probabilisable.

12. Contexte. Soit une tribu A sur Ω.

13. Propriétés.

— ∅ ∈ A ;

— ∀(An)n∈N ∈ A N,
+∞⋂
n=0

An ∈ A .

— ∀n ∈ N, ∀(Ak)0⩽k⩽n ∈ A n+1,
n⋂

k=0
Ak ∈ A et

n⋃
k=0

Ak ∈ A .

14. Définitions. Un élément A ∈ A est un évène-
ment. Un singleton de A est un évènement élémen-
taire. Deux évènements A et B sont incompatibles si
A ∩ B = ∅.

P S I · 2 5 2 6 · M A T H S



Espaces probabilisés

15. Définitions. Une suite d’évènements (An)n∈N
est croissante si

∀n ∈ N, An ⊂ An+1,

et décroissante si
∀n ∈ N, An+1 ⊂ An.

16. Définition. Une suite d’évènements (An)n∈N est
un système complet d’évènements si

— ∀(i, j) ∈ N2, i ̸= j =⇒ Ai ∩ Aj = ∅ ;

— Ω =
+∞⊔
n=0

An.

Espaces probabilisés
17. Contexte. Soit (Ω, A ) un espace probabili-
sable.
18. Définitions. Une probabilité sur (Ω, A ) est une
application

P : A → [0, 1], A 7→ P (A),
notée aussi P ou P, telle que

— P (Ω) = 1 ;
— pour tout suite (An)n∈N d’évènements incom-

patibles,

P

( +∞⊔
n=0

An

)
=

+∞∑
n=0

P (An).

Le triplet (Ω, A , P ) est un espace probabilisé.
19. Contexte. Soit une probabilité P sur (Ω, A ).
20. Définitions. Soit un évènement A ∈ A .

— A est presque sûr si P (A) = 1.
— A est négligeable si P (A) = 0.

21. Propriétés.
— P (∅) = 0 ;
— ∀A ∈ A , P (A ) = 1 − P (A) ;
— ∀(A, B) ∈ A 2,

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) ;
A ⊂ B =⇒ P (A) ⩽ P (B).

22. Théorème. Pour tout système complet d’évène-
ments (An)n∈N,

+∞∑
n=0

P (An) = 1.

23. Théorème : continuité croissante. Pour
toute suite croissante d’évènements (An)n∈N,

lim
n→+∞

P (An) = P

( +∞⋃
n=0

An

)
.

24. Théorème : continuité décroissante. Pour
toute suite décroissante d’évènements (An)n∈N,

lim
n→+∞

P (An) = P

( +∞⋂
n=0

An

)
.

25. Théorème : sous-additivité. Pour toute suite
d’évènements (An)n∈N,

P

( +∞⋃
n=0

An

)
⩽

+∞∑
n=0

P (An).

Conditionnement
26. Contexte. Soit (Ω, A , P ) un espace probabilisé.

27. Définition. Soit A un évènement tel que
P (A) ̸= 0. Pour tout évènement B, on appelle proba-
bilité (conditionnelle) de B sachant A le nombre

PA(B) = P (B |A) = P (A ∩ B)
P (A) .

28. Théorème. Soit A un évènement tel que
P (A) ̸= 0. L’application

PA : A → [0, 1], B 7→ P (B |A)
est une probabilité sur (Ω, A ), appelée probabilité
(conditionnelle) sachant A.
29. Théorème : formule des probabilités to-
tales. Soit (An)n∈N un système complet d’évène-
ments. Alors, pour tout évènement B,

P (B) =
+∞∑
n=0

P (B |An)P (An),

en convenant que P (B |An)P (An) = 0 si P (An) = 0.
30. Théorème : formule des probabilités com-
posées. Pour tout n ∈ N∗ et (A1, . . . , An) ∈ A n,

P

(
n⋂

k=1
Ak

)
=

n∏
k=1

P

(
Ak

∣∣∣∣ k−1⋂
j=1

Aj

)
= P (A1)P (A2 |A1)P (A3 |A1 ∩ A2) × · · ·

× P (An |A1 ∩ · · · ∩ An−1).
31. Théorème : formule de Bayes. Soient
(An)n∈N un système complet d’évènements, et un
évènement B tel que P (B) ̸= 0. Pour tout n ∈ N,

P (An |B) = P (B |An)P (An)∑+∞
k=0 P (B |Ak)P (Ak)

.

Indépendance
32. Contexte. Soit (Ω, A , P ) un espace probabilisé.

33. Définition. Deux évènements A et B sont indé-
pendants si

P (A ∩ B) = P (A)P (B).
34. Théorème. Si P (A) ̸= 0, les évènements A et B
sont indépendants si et seulement si P (B |A) = P (B).
35. Définitions. Soient I un ensemble d’indices au
plus dénombrable et (Ai)i∈I une suite d’évènements.

Les Ai sont indépendants deux à deux si pour tout
(i, j) ∈ I2 tel que i ̸= j, P (Ai ∩ Aj) = P (Ai)P (Aj).

Les Ai sont mutuellement indépendants si pour
tout sous-ensemble fini J ⊂ I,

P

( ⋂
j∈J

Aj

)
=

∏
j∈J

P (Aj).

36. Théorème. Si les Ai sont mutuellement indépen-
dants, alors ils sont indépendants deux à deux. La
réciproque est fausse.
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