Fonctions continues par morceaux

SUR UN SEGMENT

1. Contexte. Soit un segment réel K = [a, b], avec a < b.

2. DÉFINITION. Une subdivision de K est un ensemble de n+1 points a_0, \ldots, a_n de K, où $n \in \mathbb{N}^*$ et

$$a = a_0 < a_1 < \dots < a_n = b.$$

3. DÉFINITION. Une fonction f définie sur le segment K à valeurs réelles ou complexes est continue $par\ morceaux\ sur\ K$ s'il existe une subdivision

$$a = a_0 < a_1 < \dots < a_n = b$$

de K telle que, pour tout $i \in [0, n-1]$, la restriction $f_i = f|_{]a_i,a_{i+1}[}$ est continue et se prolonge en une fonction continue $\widetilde{f_i}$ de $[a_i,a_{i+1}]$.

Autrement dit, f est continue par morceaux sur K si elle est continue sur K, sauf éventuellement en un nombre fini de points, et en ces points, elle admet des limites finies à gauche et à droite.

4. Remarque. Dans ce cas, pour tout $i \in [0, n-1]$, \widetilde{f}_i est continue sur $[a_i, a_{i+1}]$, donc elle y admet une intégrale,

$$\int_{a_i}^{a_{i+1}} \widetilde{f}_i(t) \, \mathrm{d}t.$$

5. DÉFINITION. L'intégrale de f sur K est le nombre

$$\int_a^b f(t) dt = \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} \widetilde{f_i}(t) dt.$$

Grâce à la relation de Chasles, cette définition ne dépend pas de la subdivision choisie. De plus, pour tout $i \in \llbracket 0, n-1 \rrbracket$,

$$\int_{a_i}^{a_{i+1}} f(t) dt = \int_{a_i}^{a_{i+1}} \widetilde{f_i}(t) dt,$$

de sorte que

$$\int_{a}^{b} f(t) dt = \sum_{i=0}^{n-1} \int_{a_{i}}^{a_{i+1}} f(t) dt.$$

6. Remarques.

Sans difficulté, l'intégrale ainsi définie pour les fonctions continues par morceaux est linéaire, positive, croissante et vérifie la relation de Chasles.

En revanche, elle n'est plus strictement positive.

Sur un intervalle

- 7. Contexte. Soit un intervalle réel quelconque I.
- 8. DÉFINITION. Une fonction f définie sur l'intervalle I à valeurs réelles ou complexes est continue par morceaux sur I si elle l'est sur tout segment $K \subset I$.