Intégrabilité

1. Contexte. Considérons un intervalle réel I d'extrémités a et b dans $\overline{\mathbb{R}}$ avec a < b, et deux fonctions f et g continues par morceaux de I dans \mathbb{K} .

DÉFINITIONS

2. DÉFINITIONS. L'intégrale de f sur I converge absolument si $\int_I |f|$ converge.

La fonction f est $intégrable \ sur \ I$ si elle est continue par morceaux sur I et si son intégrale sur I converge absolument.

- 3. DÉFINITION. L'intégrale sur I de f est semi-convergente si elle converge mais pas absolument.
- 4. Exemple. $\int_0^{+\infty} \frac{\sin t}{t} dt$ est semi-convergente.

Théorèmes

- 5. Théorème. La fonction f est intégrable sur [a, b[si et seulement si la fonction $x \mapsto \int_a^x |f(t)| dt$ est majorée sur [a, b[.
- 6. Théorème : comparaisons. Ici, I = [a, b].
 - Si $|f| \leq |g|$ ou $f = O_b(g)$ ou $f = o_b(g)$, l'intégrabilité de g sur I entraine celle de f.
 - Si $f \sim_b g$, f et g sont simultanément intégrables sur I.

- 7. Remarque. Si I =]a, b], on compare f et g en a. Et si I =]a, b[, on compare séparément f et g en a et b
- 8. THÉORÈME. Si f est continue sur [a, b], elle est intégrable sur [a, b], [a, b] et [a, b].
- 9. THÉORÈME. Si l'intervalle I est borné et si f est bornée sur I, alors elle y est intégrable.
- 10. Théorème. Une fonction complexe est intégrable sur I si et seulement si sa partie réelle et sa partie imaginaire le sont.
- 11. Théorème. Si f est intégrable sur I, son intégrale sur I converge et $\left| \int_{I} f \right| \leqslant \int_{I} |f|$.
- 12. Théorème. Supposons f positive, continue et intégrable sur I. Si $\int_I f = 0$, alors f = 0.
- 13. Théorème : comparaison série-intégrale. Supposons f décroissante de \mathbb{R}_+ dans \mathbb{R}_+ . La série $\sum f(n)$ converge si et seulement si f est intégrable sur \mathbb{R}_+ .

Espace L^1

- 14. DÉFINITION. $L^1(I,\mathbb{K})$ est l'ensemble des fonctions de I dans \mathbb{K} intégrables sur I.
- 15. Théorème. $L^1(I, \mathbb{K})$ est un espace vectoriel.