Intégrales à paramètre

1. Contexte. Étant donnés deux intervalles réels A et I et une fonction $g:A\times I\to \mathbb{K}$, étudions la fonction

$$f: A \to \mathbb{K}, \ x \mapsto \int_I g(x, t) \, \mathrm{d}t.$$

2. DÉFINITION. La fonction g vérifie l'hypothèse de domination s'il existe une fonction $\varphi: I \to \mathbb{R}_+$ intégrable sur I telle que

$$\forall (x,t) \in A \times I, \ |g(x,t)| \leqslant \varphi(t).$$

3. Théorème de convergence dominée à paramètre continu.

Soit a une extrémité de A, éventuellement infinie. Supposons que

- pour tout $x \in A$, $t \mapsto g(x,t)$ est continue par morceaux sur I;
- o pour tout $t \in I$, $x \mapsto g(x,t)$ admet une limite finie $\ell(t)$ en a;
- $\ell: t \mapsto \ell(t)$ est continue par morceaux sur I;
- \circ g vérifie l'hypothèse de domination.

ALORS

- pour tout $x \in A$, $t \mapsto g(x,t)$ est intégrable sur I;
- ℓ est intégrable sur I;
- $\lim_{x \to a} \int_I g(x, t) dt = \int_I \ell(t) dt.$
- 4. Théorème : continuité.

SUPPOSONS QUE

- pour tout $t \in I$, $x \mapsto g(x, t)$ est continue sur A;
- o pour tout $x \in A$, $t \mapsto g(x,t)$ est continue par morceaux sur I;
- $\circ~g$ vérifie l'hypothèse de domination.

ALORS

- pour tout $x \in A$, $t \mapsto g(x,t)$ est intégrable sur I;
- f est définie et continue sur A.

5. Théorème : classe \mathscr{C}^1 (dérivation sous le signe f ou formule de Leibniz).

SUPPOSONS QUE

- \circ pour tout $t \in I$, $x \mapsto g(x,t)$ est de classe \mathscr{C}^1 sur A;
- pour tout $x \in A$, $t \mapsto g(x,t)$ est intégrable sur I;
- pour tout $x \in A$, $t \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue par morceaux sur I:
- $\circ \frac{\partial g}{\partial x}$ vérifie l'hypothèse de domination.

ALORS

- pour tout $x \in A$, $t \mapsto \frac{\partial g}{\partial x}(x,t)$ est intégrable sur I;
- f est de classe \mathscr{C}^1 sur A;
- $\forall x \in A, \ f'(x) = \int_{I} \frac{\partial g}{\partial x}(x,t) \, dt.$
- 6. Théorème : classe \mathscr{C}^k . Soit un entier $k\geqslant 1$.

SUPPOSONS QUE

- o pour tout $t \in I$, $x \mapsto g(x,t)$ est de classe \mathscr{C}^k sur A;
- o pour tout $x \in A$ et tout $p \in [0, k-1],$ $t \mapsto \frac{\partial^p g}{\partial x^p}(x,t)$ est intégrable sur I;
- $\circ t \mapsto \frac{\partial^k g}{\partial x^k}(x,t)$ est continue par morceaux sur I;
- $\circ \frac{\partial^k g}{\partial x^k}$ vérifie l'hypothèse de domination.

ALORS

- pour tout $x \in A$, $t \mapsto \frac{\partial^k g}{\partial x^k}(x,t)$ est intégrable sur I;
- f est de classe \mathscr{C}^k sur A;
- $\forall p \in [1, k], \forall x \in A, \ f^{(p)}(x) = \int_I \frac{\partial^p g}{\partial x^p}(x, t) dt.$