Intégrales généralisées ou impropres

1. Contexte. Considérons un intervalle réel I d'extrémités a et b dans $\overline{\mathbb{R}}$ avec a < b, et une fonction f continue par morceaux sur I, à valeurs réelles ou complexes.

SUR UN INTERVALLE SEMI-OUVERT

2. DÉFINITIONS. L'intégrale de f sur I=[a,b[converge, ou est convergente, si la fonction $x\mapsto \int_a^x f(t)\,\mathrm{d}t$ admet une limite finie quand x tend vers b. Cette limite est l'intégrale généralisée, ou intégrale impropre de f sur I, notée

$$\int_{a}^{b} f(t) dt = \lim_{x \to b^{-}} \int_{a}^{x} f(t) dt.$$

Si cette limite n'existe pas, l'intégrale de f sur I diverge, ou est divergente.

La *nature* d'une intégrale généralisée est son caractère convergent ou divergent.

- 3. REMARQUE. La convergence de l'intégrale de f sur [a,b[entraine la convergence de l'intégrale de f sur [c,b[, pour tout $c\in [a,b[$: autrement dit, la nature de l'intégrale de f sur [a,b[dépend uniquement du comportement de f au voisinage de b.
- 4. DÉFINITION. De même, on définit l'intégrale généralisée de f sur I=]a,b] par la limite, si elle existe,

$$\int_{a}^{b} f(t) dt = \lim_{x \to a^{+}} \int_{x}^{b} f(t) dt.$$

SUR UN INTERVALLE OUVERT

5. DÉFINITION. Soit c un élément de I=]a,b[. L'intégrale de f sur I converge si les deux intégrales $\int_a^c f(t) \, \mathrm{d}t \, et \, \int_c^b f(t) \, \mathrm{d}t$ convergent; dans ce cas, on pose

$$\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt.$$

6. Remarque. Cette définition ne dépend pas de c : en effet, pour d et x dans |a,b|,

$$\int_{c}^{x} f(t) dt = \int_{d}^{x} f(t) dt + \int_{c}^{d} f(t) dt,$$

donc les intégrales $\int_c^x f(t) dt$ et $\int_d^x f(t) dt$ ont simultanément une limite quand x tend vers a^+ ou vers b^- .

7. NOTATION. Si l'intégrale de f sur I converge, notons

$$\int_a^b f(t) \, \mathrm{d}t = \int_a^b f = \int_I f.$$

8. Théorème. Si f est complexe, son intégrale sur I converge si et seulement si celles de ses parties réelles et imaginaires convergent, et alors

$$\int_I f = \int_I \operatorname{Re}(f) + i \int_I \operatorname{Im}(f).$$

Exemples fondamentaux

- 9. Contexte. Soit un réel α .
- 10. Théorème : intégrales de Riemann.
 - $--\int_{1}^{+\infty}\frac{\mathrm{d}t}{t^{\alpha}} \text{ converge si et seulement si }\alpha>1\,;$
 - $--\int_0^1 \frac{\mathrm{d}t}{t^\alpha} \text{ converge si et seulement si } \alpha < 1 \,;$
- $-\int_a^b \frac{\mathrm{d}t}{(b-t)^\alpha} \text{ converge si et seulement si } \alpha < 1.$
- 11. THÉORÈME. $\int_0^{+\infty} e^{-\alpha t} dt$ converge si et seulement si $\alpha > 0$.
- 12. Théorème. $\int_0^1 \ln(t) dt$ converge.

Propriétés

- 13. Contexte. Considérons toujours un intervalle réel I d'extrémités a et b, et des fonctions f et g continues par morceaux sur I à valeurs réelles ou complexes.
- 14. Théorème : relation de Chasles. Si $\int_a^b f$ converge, alors pour tout $c\in I$, $\int_a^c f$ et $\int_c^b f$ convergent et

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

15. Théorème : Linéarité. Soit λ un scalaire. Si $\int_I f$ et $\int_I g$ convergent, alors $\int_I (f+\lambda g)$ converge et

$$\int_{I} (f + \lambda g) = \int_{I} f + \lambda \int_{I} g.$$

- 16. Théorème : Positivité. Si f est réelle positive et que $\int_I f$ converge, alors $\int_I f \geqslant 0$.
- 17. Théorème : Croissance. Si f et g sont réelles, que $f\leqslant g$ sur I et que $\int_I f$ et $\int_I g$ convergent, alors $\int_I f\leqslant \int_I g$.
- 18. Théorème : Changement de Variable. Soit φ une bijection de classe \mathscr{C}^1 d'un intervalle J dans I. Supposons f continue sur I. Alors, les intégrales $\int_I f$ et $\int_I f \circ \varphi \cdot |\varphi'|$ ont même nature ; et si elles convergent,

$$\int_{I} f = \int_{J} f \circ \varphi \cdot |\varphi'|.$$

19. DÉFINITION. Si une fonction F définie sur I admet des limites aux extrémités a et b de I, on pose

$$[F]_I = [F]_a^b = \lim_{b^-} F - \lim_{a^+} F.$$

20. Théorème : intégration par parties. Soient u et v deux fonctions de classe \mathscr{C}^1 sur I. Si deux des trois écritures $\int_I u \, v', \, \int_I u' \, v$ et $\begin{bmatrix} u \, v \end{bmatrix}_I$ ont un sens, alors la troisième a aussi un sens et

$$\int_{I} u v' = \left[u v \right]_{I} - \int_{I} u' v.$$