Notations usuelles

CARACTÈRES GRECS

$A \alpha$	alpha	$N \nu$	nu
$B \beta$	bêta	$\Xi \xi$	xi, ksi
$\Gamma \gamma$	gamma	Oo	omicron
$\Delta \delta$	delta	$\Pi \ \pi \ \varpi$	pi
$E \varepsilon \epsilon$	epsilon	$P \rho \varrho$	rho
$Z\zeta$	zêta, dzêta	$\Sigma \sigma \varsigma$	sigma
$H \eta$	êta	$T \tau$	tau
$\Theta \theta \vartheta$	thêta	Υv	upsilon
$I \iota$	iota	$\Phi \phi \varphi$	phi
$K \kappa \varkappa$	kappa	$X \chi$	khi, chi
$\Lambda \lambda$	lambda	$\varPsi\psi$	psi
$M \mu$	mu	$\Omega \omega$	oméga

Logique

non, \neg	négation
ou, \vee	disjonction
et, \wedge	conjonction
\Longrightarrow	implication
\iff	équivalence
3	quantificateur existentiel
∃!	il existe un unique
\forall	quantificateur universel

DÉNOMBREMENT

cara(2)	caramar ac 2
n!	factorielle $(0! = 1)$
$\binom{n}{p}$	combinaisons, ou coefficients du binôme

card(E) cardinal de E

ARITHMÉTIQUE

$a \mid b$	a divise b
$a \equiv b \ [p]$	aest congru à b modulo p
pgcd	plus grand commun
	diviseur
ppcm	plus petit commun
	multiple

Ensembles

E

ensemble vide

$x \in E$ appartenance
$\mathscr{P}(E)$ ensemble des parties de E
$\{x \in E \mid P(x)\}$ ensemble des $x \in E$ qui vérifient $P(x)$
$E \subset F, \ E \varsubsetneq F$ inclusion, stricte
$E \setminus F$ différence
$E \cap F$, $\bigcap_{i=1}^{n} E_i$ intersection
$E \cup F$, $\bigcup_{i=1}^{n} E_i$ (ré)union
$E \sqcup F$, $\bigsqcup_{i=1}^{n} E_{i}$ (ré)union disjointe
$E \times F$, $\prod_{i=1}^{n} E_i$ produit cartésien

APPLICATIONS

 $f: E \to F, E \xrightarrow{f} F$ application f

•	$\det E \operatorname{dans} F$
) application qui à x
• ()	associe $f(x)$
E	
$f \mid x$	$\begin{array}{ccc} \longrightarrow & F \\ \longrightarrow & f(x), \end{array}$
	$F, x \mapsto f(x)$ les deux à la
v	fois
$\mathrm{id}_E:E$ -	$\rightarrow E, x \mapsto x$ identité de E
$(x_i)_{i\in I}$	famille indéxée par ${\cal I}$
$\mathbb{1}_A$	fonction caractéristique
	de A
$\mathscr{F}(E,F)$	$=F^{E}$ ensemble des
	applications de E dans F
$g \circ f$	composée $x \mapsto g(f(x))$
f^k	composée k fois de f par
	elle-même, où $k \in \mathbb{N}$, avec
	$f^0 = \mathrm{id}_E$
f^{-1}	réciproque $si\ f\ est\ bijective$
f(A)	image directe de $A\subset E$
$f^{-1}(B)$	image réciproque de $B\subset F$
Si $f:E$	$ ightarrow F, A\subset E { m et}$
$f(E)\subset I$	$B\subset F$
$f _A$	restriction $f _A:A\to F$
$f ^B$	corestriction $f ^B: E \to B$
$f _A^B$	les deux $f _A^B: A \to B$
	A = A = A = A cas où $A = A = A$

Ensembles ordonnés

Pour ur	n ensemble A
$\max A$	plus grand élément
$\min A$	plus petit élément
$\sup A$	borne supérieure
$\inf A$	borne inférieure
Pour ur	ne fonction f définie sur E
$\max_{E} f =$	$= \max_{x \in E} f(x)$ maximum
$\min_{E} f =$	$\min_{x \in E} f(x)$ minimum
$\sup_{E} f =$	$\sup_{x \in E} f(x) \text{borne supérieure}$
	$\inf_{x \in E} f(x)$ borne inférieure
\mathbf{E}	NSEMBLES USUELS
\mathbb{N}, \mathbb{Z}	ensemble des entiers
	naturels, relatifs
$[\![p,q]\!],[\![p$	$[p,q[\![,]\!]p,q]\!],[\![p,q[\![$
	intervalles de \mathbb{Z}
\mathbb{Q}, \mathbb{R}	ensemble des nombres
	rationnels, réels
$\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} a \end{bmatrix}$	$h[]a \ h]]a \ h[$

[a,b], [a,b[,]a,b],]a,b[, $[a,+\infty[,]a,+\infty[,]-\infty,b],]-\infty,b[$ intervalles de $\mathbb R$ $\mathbb{R} \cup \{-\infty, +\infty\}$ \mathbb{C} ensemble des nombres complexes ensemble des nombres complexes de module 1 ensemble des racines $n^{\rm es}$ de \mathbb{U}_n l'unité

Re(z), Im(z) partie réelle, imaginaire |z|, Arg(z) module, argument conjugué

Polynômes

 $\mathbb{K}[X]$ ensemble des polynômes à une indéterminée X et à coefficients dans \mathbb{K} deg(P) degré du polynôme P $\mathbb{K}_n[X] = \{ P \in \mathbb{K}[X] \mid \deg(P) \leqslant n \}$ $\sum\limits_{k=0}^{n}a_{k}X^{k}$ polynôme de coefficients $(a_{k})_{0\leqslant k\leqslant n}\in\mathbb{K}^{n+1}$ $\sum_{k=0}^{+\infty} a_k X^k \quad \text{polynôme de coefficients} \\ (a_k)_{k \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}} \ presque \ tous \\ nuls$

ESPACES VECTORIELS

- Vect(A), $Vect(x_i)_{1 \leq i \leq n}$ espace vectoriel engendré par une partie A, une famille $(x_i)_{1 \leqslant i \leqslant n}$
- E + F, $\sum_{i=1}^{n} E_i$ somme
- $E \oplus F$, $\bigoplus_{i=1}^{n} E_i$ somme directe
- $\dim(E)$ dimension de E
- $rg(x_i)_{1 \leq i \leq n}$ rang d'une famille $(x_i)_{1 \leqslant i \leqslant n}$
- δ_{ij} symbole de Kronecker

APPLICATIONS LINÉAIRES

- $\mathfrak{L}(E,F)$ ensemble des applications linéaires de E dans F
- $\mathfrak{L}(E)$ ensemble des endomorphismes de E
- groupe linéaire de E: GL(E)ensemble des automorphismes de E
- novau de uKer(u)
- Im(u)image de u
- rg(u)rang de u

MATRICES

- $\mathfrak{M}_{n,n}(\mathbb{K})$ ensemble des matrices de n lignes et p colonnes à coefficients dans \mathbb{K}
- ensemble des matrices $\mathfrak{M}_n(\mathbb{K})$ carrées de taille n à coefficients dans \mathbb{K}
- $GL_n(\mathbb{K})$ ensemble des matrices carrées inversibles de taille n
- I, I_n matrice identité, de taille n
- M^{-1} inverse de $M \in GL_n(\mathbb{K})$
- M^{\top} transposée de M
- rg(M)rang de M
- $\operatorname{mat}_{\mathscr{B},\mathscr{C}}(u) = \operatorname{mat}(u,\mathscr{B},\mathscr{C})$ matrice de u dans les bases \mathscr{B} et \mathscr{C}

ESPACES EUCLIDIENS

- $(x|y) = \langle x, y \rangle = x \cdot y$ produit scalaire
- ||x||norme euclidienne de xdistance entre x et yd(x,y)
- x est orthogonal à y $x \perp y$
- A^{\perp} orthogonal d'une partie A
- O(E)groupe orthogonal: ensemble des isométries linéaires de E
- O(n)groupe des matrices orthogonales de taille n
- SO(n)groupe spécial orthogonal, des matrices orthogonales positives
- $[\vec{x}, \vec{y}, \vec{z}]$ produit mixte dans \mathbb{R}^3 produit vectoriel dans \mathbb{R}^3 $\vec{x} \wedge \vec{y}$

DÉRIVATION

Fonction de la variable réelle x

- dérivée première
- $f^{(k)}$ dérivée k^{e}
- \mathscr{C}^k ensemble des fonctions kfois dérivables et dont la dérivée $k^{\rm e}$ est continue,
- \mathscr{C}^{∞} ensemble des fonctions indéfiniment dérivable

Fonction des variables réelles xet y

- ∂f dérivée partielle par
- $\overline{\partial x}$ rapport à x
- dérivée partielle par rapport à y

Intégration

$$\int_I f = \int_a^b f(t) dt$$
 intégrale de $f: t \mapsto f(t)$, ordinaire si $I = [a, b]$, généralisée si $I = [a, b[$ ou $I =]a, b[$ ou $I =]a, b[$.

Comparaison

Pour des suites (u_n) et (v_n)

- $\lim u_n = \lim_{n \to +\infty} u_n \quad \text{limite}$
- $u_n = o(v_n), \ u_n \ll v_n$ négligeabilité, prépondérance
- $u_n = O(v_n)$ domination
- $u_n \sim v_n$ équivalence

Pour des fonctions f et g en $a \in \overline{\mathbb{R}}$

- $\lim_{a} f = \lim_{x \to a} f(x) \quad \text{limite}$
- $f = \underset{a}{o}(g), \ f \underset{a}{\ll} g$ négligeabilité, prépondérance
- $f = \underset{a}{\mathcal{O}}(g)$ domination
- $f \sim g$ équivalence

Analyse vectorielle

 ∇ nabla gradient grad ÷ divergence rotrotationnel Δ

FONCTIONS USUELLES

- x^{α} puissance
- $\sqrt[n]{x}$ racine n^{e}
- exponentielle exp
- nombre de Neper elogarithme népérien ln

laplacien

- $\log = \log_{10}$ logarithme décimal
- cosinus cos
- sinus \sin
- tan tangente
- plus petit réel x > 0 tel π
 - que $e^{2ix} = 1$
- Arccos Arc cosinus
- Arcsin Arc sinus
- Arctan Arc tangente
- chcosinus hyperbolique
- shsinus hyperbolique