
Espaces préhilbertiens réels

1. Contexte. Soit E un R-espace vectoriel.

Produit scalaire euclidien

Définitions
2. Définition. Une forme bilinéaire sur E est une
application

φ : E2 → R, (x, y) 7→ φ(x, y),

telle que
— pour tout x de E, l’application y 7→ φ(x, y) est

une forme linéaire ;
— pour tout y de E, l’application x 7→ φ(x, y) est

une forme linéaire.

3. Définitions. Elle est
— symétrique si

∀(x, y) ∈ E2, φ(y, x) = φ(x, y) ;

— positive si

∀x ∈ E, φ(x, x) ⩾ 0 ;

— définie positive si

∀x ∈ E ∖ {0E}, φ(x, x) > 0.

4. Définition. Un produit scalaire euclidien sur E
est une forme bilinéaire symétrique définie positive.
Le produit scalaire de deux vecteurs x et y de E est
souvent noté (x |y), ⟨x, y⟩, ⟨x |y⟩ ou x · y.

5. Contexte. Soit (· | ·) un tel produit scalaire.

6. Définition. La norme euclidienne associée est
l’application

∥·∥ : E → R+, x 7→ ∥x∥ =
√

(x |x).

7. Définition. Le couple (E, (· | ·)), souvent noté
abusivement E, est un espace préhilbertien réel, ou
un espace euclidien si E est de dimension finie.

Propriétés
8. Contexte. Soient x et y deux vecteurs de E.

9. Théorème de Pythagore généralisé.

∥x + y∥2 = ∥x∥2 + 2(x |y) + ∥y∥2.

10. Théorème : identités de polarisation.

(x |y) = 1
2

(
∥x + y∥2 − ∥x∥2 − ∥y∥2)

= 1
4

(
∥x + y∥2 − ∥x − y∥2)

.

11. Théorème : inégalité de Cauchy-Schwarz.

|(x |y)| ⩽ ∥x∥∥y∥.

Il y a égalité si et seulement si x et y sont liés.

12. Théorème : inégalité de Minkowski.

∥x + y∥ ⩽ ∥x∥ + ∥y∥.

Il y a égalité si et seulement si x et y sont colinéaires
de même sens.

13. Théorème de représentation.
Si E est euclidien,

∀φ ∈ L(E,R), ∃!a ∈ E, ∀x ∈ E, φ(x) = (a |x).

14. Théorème. L’espace (E, ∥·∥) est un espace vec-
toriel normé.

Orthogonalité
15. Contexte. Soit E un espace préhilbertien réel,
de produit scalaire (· | ·) et de norme ∥·∥.

Généralités

16. Définition. Deux vecteurs x et y de E sont or-
thogonaux si (x |y) = 0 et l’on note x ⊥ y.

17. Définition. Deux parties A et B de E sont or-
thogonales si

∀x ∈ A, ∀y ∈ B, (x |y) = 0.

Dans ce cas, on note A ⊥ B.

18. Définition. L’orthogonal d’une partie A de E est

A⊥ =
{

x ∈ E | ∀y ∈ A, (x |y) = 0
}

.

On note (A⊥)⊥ = A⊥⊥.

19. Théorème. Pour toute partie A de E, A⊥ est
un sous-espace vectoriel de E et A ⊂ A⊥⊥.

Supplémentaires orthogonaux

20. Contexte. Soit F un sous-espace vectoriel de E.

21. Théorème. F ∩ F ⊥ = {0}.

22. Définition. F admet un supplémentaire ortho-
gonal s’il existe un sous-espace vectoriel G de E tel
que E = F ⊕ G et F ⊥ G.

23. Théorème. Dans ce cas, G = F ⊥ et F = G⊥.
On peut donc dire que F ⊥ est le supplémentaire
orthogonal de F .

24. Théorème. Si E est euclidien, E = F ⊕ F ⊥ et
dim F ⊥ = dim E − dim F .
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Espaces préhilbertiens réels

Familles orthonormées
25. Définition. Un vecteur e est unitaire ou normé
si ∥e∥ = 1.
26. Définition. Soit un ensemble d’indices I. Une
famille (ei)i∈I de vecteurs de E est orthogonale si

∀(i, j) ∈ I2, i ̸= j =⇒ (ei |ej) = 0.

Elle est orthonormée ou orthonormale si

∀(i, j) ∈ I2, (ei |ej) = δij =
{

0 si i ̸= j,

1 si i = j.

27. Théorème. Toute famille orthogonale ne conte-
nant pas 0E et toute famille orthonormée est libre.
28. Définition. Une base orthonormée ou orthonor-
male de E est une famille orthonormée qui est aussi
une base de E.

Bases orthonormées d’un espace euclidien
29. Contexte. Dans ce paragraphe, supposons que
E est euclidien, de dimension n.
30. Théorème : procédé d’orthonormalisation
de Gram-Schmidt. Soit une base (ε1, . . . , εn) de E.
Il existe une unique base orthonormée (e1, . . . , en)
de E telle que pour tout k ∈ [[1, n]],{

Vect({e1, . . . , ek}) = Vect({ε1, . . . , εk}),
(εk |ek) > 0.

On a e1 = ε1

∥ε1∥
et

∀k ∈ [[2, n]], ek =
εk −

∑k−1
i=1 (ei |εk)ei√

∥εk∥2 −
∑k−1

i=1 (ei |εk)2
.

31. Contexte. Soient B = (e1, . . . , en) une base
orthonormée de E, x et y deux vecteurs de E.
32. Théorème.

x =
n∑

i=1
(ei |x)ei, ∥x∥2 =

n∑
i=1

(ei |x)2,

(x |y) =
n∑

i=1
(ei |x)(ei |y).

33. Théorème. Si X = matB(x) et Y = matB(y),

(x |y) = X⊤Y = Y ⊤X.

Projection orthogonale

34. Contexte. Revenons au cas général : E est pré-
hilbertien réel.

35. Définition. Un projecteur de E est orthogonal
si son image et son noyau sont orthogonaux.

36. Théorème. Pour tout vecteur e non nul de E,

E = Re ⊕ e⊥

et le projecteur orthogonal sur Re est l’application

pe : E → E, x 7→ (e |x)
(e |e) e.

37. Contexte. Soit F un sous-espace vectoriel de E,
de dimension finie p. Soit (ei)1⩽i⩽p une base ortho-
normée de F .

38. Théorème. E = F ⊕ F ⊥ et le projecteur ortho-
gonal sur F est l’application

pF : E → E, x 7→
p∑

i=1
(ei |x)ei.

39. Théorème : inégalité de Bessel.

∀x ∈ E, ∥pF (x)∥ ⩽ ∥x∥.

40. Théorème. Soit x ∈ E.

— ∀y ∈ F, ∥x − pF (x)∥ ⩽ ∥x − y∥.

— La borne inférieure infy∈F ∥x − y∥ existe et est
atteinte. C’est la distance de x à F , notée d(x, F ).

— ∀y ∈ F, ∥x − y∥ = d(x, F ) ⇐⇒ y = pF (x).

— d(x, F )2 = ∥x − pF (x)∥2 = ∥x∥2 −
p∑

i=1
(ei |x)2.
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