Séries entières

1. NOTATION. n désigne un entier naturel.

Définition

2. DÉFINITION. Étant donnée une suite complexe $(a_n)_{n\in\mathbb{N}}$ et une variable $z\in\mathbb{C}$, on appelle série entière la série de fonctions

$$\sum (z \mapsto a_n z^n),$$

que l'on notera abusivement

$$\sum a_n z^n.$$

3. Remarque. Autrement dit, selon le contexte, la notation $\sum a_n \, z^n$ désignera aussi bien une série numérique qu'une série de fonctions.

Rayon de convergence

DÉFINITIONS

- 4. Contexte. Soit une série entière $\sum a_n z^n$.
- 5. LEMME D'ABEL. S'il existe $z_0 \in \mathbb{C}^*$ tel que la suite $(a_n z_0^n)_{n \in \mathbb{N}}$ soit bornée, alors pour tout $z \in \mathbb{C}$ tel que $|z| < |z_0|$, la série $\sum a_n z^n$ converge absolument.
- 6. Théorème. Il existe un unique

$$R \in [0, +\infty] = [0, +\infty[\cup \{+\infty\}]$$

tel que pour tout $z \in \mathbb{C}$,

 $|z| < R \Longrightarrow \sum a_n z^n$ converge absolument;

 $|z| > R \Longrightarrow \sum a_n z^n$ diverge grossièrement.

7. DÉFINITIONS. Ce R s'appelle le rayon de convergence de la série entière $\sum a_n z^n$.

Le disque ouvert $D(0, \overline{R}) = \{z \in \mathbb{C} \mid |z| < R\}$ s'appelle le disque (ouvert) de convergence.

Le cercle $C(0,R) = \{z \in \mathbb{C} \mid |z| = R\}$ s'appelle le cercle de convergence, ou mieux le cercle d'incertitude.

8. Contexte. Jusqu'à la fin du paragraphe, considérons deux séries entières $\sum a_n z^n$ et $\sum b_n z^n$, de rayons de convergence R_a et R_b .

Comparaisons

- 9. Théorème. Si $|a_n| \leq |b_n|$ à partir d'un certain rang, alors $R_a \geqslant R_b$.
- 10. Théorème. Si $|a_n| \sim |b_n|$, alors $R_a = R_b$.
- 11. Théorème.

S'il existe $\alpha \in \mathbb{R}$ tel que $a_n = n^{\alpha} b_n$, alors $R_a = R_b$. S'il existe une fraction rationnelle non nulle $F \in \mathbb{C}(X)$ telle que $a_n = F(n)b_n$, alors $R_a = R_b$.

12. Théorème : Règle de d'Alembert. Si $a_n \neq 0$ à partir d'un certain rang, et si

$$\lim_{n\to+\infty}\left|\frac{a_{n+1}}{a_n}\right|=\ell\in[0,+\infty]\,,$$

alors $R_a = \frac{1}{\ell} \in [0, +\infty].$

OPÉRATIONS

13. Théorème. Soit $\sum c_n z^n$ la série entière somme de $\sum a_n z^n$ et $\sum b_n z^n$, où $c_n = a_n + b_n$, de rayon de convergence R_c .

Alors $R_c \geqslant \min\{R_a, R_b\}$, et si $R_a \neq R_b$, $R_c = \min\{R_a, R_b\}$. De plus, pour tout $z \in \mathbb{C}$ tel que $|z| < \min\{R_a, R_b\}$,

$$\sum_{n=0}^{+\infty} c_n z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n.$$

14. DÉFINITION. On appelle produit de Cauchy des séries entières $\sum a_n z^n$ et $\sum b_n z^n$, la série entière $\sum c_n z^n$ où

$$c_n = \sum_{p+q=n} a_p b_q = \sum_{p=0}^n a_p b_{n-p} = \sum_{q=0}^n a_{n-q} b_q.$$

15. Théorème. Soit $\sum c_n z^n$ le produit de Cauchy de $\sum a_n z^n$ et $\sum b_n z^n$, où $c_n = \sum_{p+q=n} a_p b_q$, de rayon de convergence R_c .

Alors $R_c \geqslant \min\{R_a, R_b\}$. De plus, pour tout $z \in \mathbb{C}$ tel que $|z| < \min\{R_a, R_b\}$,

$$\sum_{n=0}^{+\infty} c_n z^n = \left(\sum_{p=0}^{+\infty} a_p z^p\right) \cdot \left(\sum_{q=0}^{+\infty} b_q z^q\right).$$

Régularité de la somme

16. CONTEXTE. Étant donnée une suite complexe $(a_n)_{n\in\mathbb{N}}$ et une variable $x\in\mathbb{R}$, considérons la série entière $\sum a_n x^n$, de rayon de convergence R>0, et étudions sa somme

$$S:]-R, R[\to \mathbb{C}, \ x \mapsto \sum_{n=0}^{+\infty} a_n x^n.$$

17. Théorème. La série entière $\sum a_n \, x^n$ converge normalement sur tout segment de]-R,R[.

18. Théorème : continuité.

La somme S est continue sur]-R,R[.

19. Théorème : Primitivation.

La série entière intégrée terme à terme $\sum a_n \frac{x^{n+1}}{n+1}$ a pour rayon de convergence R.

On peut primitiver S terme à terme : pour tout $x \in]-R, R[$.

$$\int_0^x S(t) dt = \sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1} = \sum_{n=1}^{+\infty} a_{n-1} \frac{x^n}{n}.$$

20. Théorème : classe \mathscr{C}^1 .

La série entière dérivée terme à terme $\sum_{n\geqslant 1} n\,a_n\,x^{n-1} \text{ a pour rayon de convergence } R.$

La fonction S est de classe \mathscr{C}^1 sur]-R,R[et pour tout $x\in]-R,R[$,

$$S'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n.$$

21. Théorème : classe \mathscr{C}^{∞} .

Pour tout $p \in \mathbb{N}^*$, la série entière dérivée p fois $\sum_{n \geqslant p} n(n-1) \cdots (n-p+1) a_n x^{n-p}$ a pour rayon de convergence R.

La fonction S est de classe \mathscr{C}^{∞} sur]-R, R[et, pour tout $p \in \mathbb{N}^*$ et tout $x \in]-R, R[$,

$$S^{(p)}(x) = \sum_{n=p}^{+\infty} n(n-1) \cdots (n-p+1) a_n x^{n-p}.$$

22. Théorème. Pour tout $n \in \mathbb{N}$,

$$a_n = \frac{S^{(n)}(0)}{n!},$$

donc pour tout $x \in]-R, R[$,

$$S(x) = \sum_{n=0}^{+\infty} \frac{S^{(n)}(0)}{n!} x^n.$$

23. Théorème. S admet un développement limité à tout ordre en 0, obtenu en tronquant la somme : pour tout $n \in \mathbb{N}$, au voisinage de 0,

$$S(x) = \sum_{k=0}^{n} a_k x^k + o(x^n).$$

Développement en série entière

24. Contexte. On se donne un réel r > 0 et une fonction $f:]-r, r[\to \mathbb{C}.$

25. DÉFINITION. La fonction f est développable en série entière (en 0 ou sur]-r, r[) s'il existe une série entière $\sum a_n x^n$ de rayon de convergence $R \geqslant r$ telle que

$$\forall x \in]-r, r[, f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

La série entière $\sum a_n x^n$ s'appelle le développement en série entière de f (en 0).

26. Théorème. Si f est développable en série entière, elle est de classe \mathscr{C}^{∞} sur]-r,r[et son développement en série entière est

$$\sum \frac{f^{(n)}(0)}{n!} x^n.$$

27. DÉFINITION. Si f est de classe \mathscr{C}^{∞} sur]-r,r[, la série entière

$$\sum \frac{f^{(n)}(0)}{n!} x^n.$$

s'appelle la série de Taylor de f en 0.

28. Théorème. La fonction f est développable en série entière si et seulement si

- f est de classe \mathscr{C}^{∞} sur]-r,r[;
- la suite $(R_n)_{n\in\mathbb{N}}$ des restes

$$R_n: x \mapsto \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

converge simplement sur]-r,r[vers la fonction nulle.

29. THÉORÈME. Si f et une autre fonction $g:]-r, r[\to \mathbb{C}$ sont développables en série entière, alors f+g et fg le sont, et leurs développements s'obtiennent respectivement comme somme et produit de Cauchy de ceux de f et g.

30. Théorème. Si f est développable en série entière, alors ses primitives et dérivées de tous ordres le sont, et leurs développements s'obtiennent respectivement comme primitives et dérivées de celui de f.