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Corrigé du dixième devoir à la maison

Convention. En suivant le programme, nous ose-
rons dire qu’une fonction est intégrable en b pour dire
qu’elle est intégrable sur un intervalle de la forme
[a, b[, même si l’expression n’est pas très heureuse.

P.1.a. Comme 0 < f ≪b g et que g est intégrable
en b, f est intégrable en b.

Soit ε > 0. Il existe c ∈ [a, b[ tel que, pour tout
x ∈ [c, b[, f(x) ⩽ εg(x). Alors, par croissance de l’in-
tégrale, et sachant que f et g sont intégrables sur [a, b[
donc sur [x, b[,

∫ b

x
f ⩽ ε

∫ b

x
g. On vient de prouver que

∀ε > 0, ∃c ∈ [a, b[, ∀x ∈ [c, b[,
∫ b

x
f ⩽ ε

∫ b

x
g,

c’est-à-dire
∫ b

x
f = ob(

∫ b

x
g).

P.1.b. Comme 0 < f ∼b g et que g est intégrable
en b, f est intégrable en b.

On peut à nouveau utiliser les ε. Sinon, dire que
f ∼b g signifie que f = g + ob(g), donc pour tout
x ∈ [a, b[, ∫ b

x
f =

∫ b

x
g +

∫ b

x
(ob(g)),

et avec la question précédente,∫ b

x
f =

∫ b

x
g + ob(

∫ b

x
g),

c’est-à-dire
∫ b

x
f ∼b

∫ b

x
g.

P.2.a. Soit ε > 0. Il existe c ∈ [a, b[ tel que, pour
tout x ∈ [c, b[, f(x) ⩽ εg(x). Fixons un tel c. Alors,∫ x

a
f =

∫ c

a
f +

∫ x

c
f ⩽

∫ c

a
f + ε

∫ x

c
g ⩽

∫ c

a
f + ε

∫ x

a
g.

Mais limx→b

∫ x

a
g = +∞ car g n’est pas intégrable

en b. Alors, il existe d ∈ [c, b[ tel que, pour tout
x ∈ [d, b[,

∫ c

a
f ⩽ ε

∫ x

a
g. Donc

∫ x

a
f ⩽ 2ε

∫ x

a
g et∫ x

a
f = ob(

∫ x

a
g).

La fonction g : t 7→ 1/
√

t n’est pas intégrable
en +∞. Les fonctions f1 : t 7→ 1/t et f2 : t 7→ 1/t2

sont toutes deux négligeables devant g en +∞. Mais,
f1 n’est pas intégrable en +∞ et f2 l’est.

P.2.b. Comme 0 < f ∼b g et que g n’est pas inté-
grable en b, f n’est pas intégrable en b.

Comme f ∼b g, f − g = ob(g). En utilisant P.2.a,∫ x

a
f −

∫ x

a
g ⩽

∫ x

a
(f − g) = ob(

∫ x

a
g).

Ainsi
∫ x

a
f ∼b

∫ x

a
g.

Commentaire. Tous ces résultats s’appliquent bien-sûr
à des intervalles du type ]a, b], grâce à des change-
ments de variables appropriés.

I.A.1. En 0+, et

Arcsin t
∼ 1

t
et t 7→ 1

t
n’est pas inté-

grable en 0, donc d’après P.2.b,∫ 1

x

et

Arcsin t
dt ∼0+

∫ 1

x

dt

t
= − ln x.

I.A.2. En 0+,
∫ 1

x

et

Arcsin t
dt = − ln x+o(ln x), donc∫ x2

x3

et

Arcsin t
dt

=
∫ 1

x3

et

Arcsin t
dt −

∫ 1

x2

et

Arcsin t
dt

= − ln(x3) + o(ln(x3)) + ln(x2) + o(ln(x2))
= − ln x + o(ln x) ∼0+ − ln x.

Dorénavant, dans tout le reste du problème, sauf
mention contraire, les limites, équivalences et négli-
geabilités sont faites en +∞.

I.B.1. En intégrant par parties,∫ x

2

dt

ln t
= x

ln x
− 2

ln 2 +
∫ x

2

dt

ln2 t
.

D’une part, 2
ln 2 ≪ x

ln x
. D’autre part, 1

t
≪ 1

ln t
,

donc t 7→ 1
ln t

n’est pas intégrable en +∞. Or,
1

ln2 t
≪ 1

ln t
donc d’après P.2.a,∫ x

2

dt

ln2 t
≪

∫ x

2

dt

ln t
.

Ainsi,∫ x

2

dt

ln t
= x

ln x
+ o

(
x

ln x

)
+ o

(∫ x

2

dt

ln t

)
,

c’est-à-dire
∫ x

2

dt

ln t
∼ x

ln x
.

I.B.2. Pour n ∈ N, nommons P (n) la phrase∫ x

2

dt

ln t
=

n∑
k=0

k!x
lnk+1 x

−
n∑

k=0

k!2
lnk+1 2

+ (n + 1)!
∫ x

2

dt

lnn+2 t
.

P (0) est l’intégration par parties de la question pré-
cédente. Supposons P (n) vraie. En intégrant par par-
ties, ∫ x

2

dt

lnn+2 t
= x

lnn+2 x
− 2

lnn+2 2

+ (n + 2)
∫ x

2

dt

lnn+3 t

donc P (n + 1) est vraie. Comme en I.B.1, de cette
égalité on tire∫ x

2

dt

lnn+2 t
∼ x

lnn+2 x
≪ x

lnn+1 x
.
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Corrigé du dixième devoir à la maison

Dans P (n), la seconde somme est une constante, donc
elle est négligeable devant x/lnn+1 x.

Alors, pour tout n ∈ N,∫ x

2

dt

ln t
=

n∑
k=0

k!x
lnk+1 x

+ o
(

x

lnn+1 x

)
.

Commentaire. Dans ce développement asymptotique,
tous les termes sont des infiniment grands en x.

I.C. D’abord, t 7→ et

t2 + 1 n’est pas intégrable en +∞

car et

t2 + 1 ≫ 1
t
. En outre, et

t2 + 1 ∼ et

t2 donc d’après

P.2.b, ∫ x

1

et

t2 + 1 dt ∼
∫ x

1

et

t2 dt.

De plus, en intégrant deux fois par parties,∫ x

1

et

t2 dt = ex

x2 − e + 2ex

x3 − 2e +
∫ x

1

6et

t4 dt.

Avec une nouvelle intégration par parties, on a∫ x

1

et

t4 dt ∼ ex

x4 ≪ ex

x3

donc ∫ x

1

et

t2 dt = ex

x2 + 2ex

x3 + o
(

ex

x3

)
,

où l’on a négligé les constantes additives. Enfin,∫ x

1

et

t2 dt −
∫ x

1

et

t2 + 1 dt =
∫ x

1

et

t2 (t2 + 1) dt.

Or et

t2 (t2 + 1) ∼ et

t4 donc∫ x

1

et

t2 (t2 + 1) dt ∼
∫ x

1

et

t4 dt ≪ ex

x3 .

Ainsi, ∫ x

1

et

t2 + 1 dt =
∫ x

1

et

t2 dt + o
(

ex

x3

)
= ex

x2 + 2ex

x3 + o
(

ex

x3

)
.

Commentaire. Là encore, tous les termes sont des
infiniment grands en x.

II.A. Pour éviter les complications en 0, nous sup-
poserons a ⩾ 1.

Si α ̸= 0,
f ′(x)
f(x) ∼ α

x
. Comme x 7→ 1/x n’est pas

intégrable en +∞,∫ x

a

f ′

f
∼ α

∫ x

a

dt

t
∼ α ln x.

D’où ln f(x) ∼ α ln x, soit encore ln f(x)
ln x

→ α.

Si α = 0,
f ′(x)
f(x) ≪ 1

x
, d’où

∫ x

a

f ′

f
≪

∫ x

a

dt

t
. Donc,

ln f(x) ≪ ln x, soit encore ln f(x)
ln x

→ 0.

II.B.1. Comme α < −1, posons β = 1
2 (α − 1),

de sorte que α < β < −1. Pour x assez grand,
ln f(x) ⩽ β ln x et par croissance de l’exponentielle,
f(x) ⩽ xβ . Comme β < −1, x 7→ xβ est intégrable
en +∞, donc

f est intégrable en +∞.

II.B.2. Posons g(x) = xf(x)
α + 1 . Comme f est C 1, g

l’est aussi. De plus,

g′(x) = xf ′(x) + f(x)
α + 1 ∼ αf(x) + f(x)

α + 1 = f(x).

Ainsi, g′ est intégrable en +∞. En outre, avec les
notations de la question précédente, xf(x) ⩽ x1+β

où 1 + β < 0, donc g → 0. D’après P.1.b,∫ +∞

x

f ∼
∫ +∞

x

g′ = −g(x) = −xf(x)
α + 1 .

II.C.1. Comme α > −1, posons γ = 1
2 (α − 1),

de sorte que α > γ > −1. Pour x assez grand,
ln f(x) ⩾ γ ln x et par croissance de l’exponentielle,
f(x) ⩾ xγ . Comme γ > −1, x 7→ xγ n’est pas inté-
grable en +∞, donc

f n’est pas intégrable en +∞.

II.C.2. Posons g(x) = xf(x)
α + 1 . Comme en II.B.2,

g′(x) ∼ f(x). Ainsi, g′ n’est pas intégrable en +∞.
En outre, avec les notations de la question précédente,
xf(x) ⩾ x1+γ où 1 + γ > 0, donc g → +∞. D’après
P.2.b, ∫ x

a

f ∼
∫ x

a

g′ = g(x) − g(a) ∼ xf(x)
α + 1 .

II.C.3. Soit f : x 7→ 2 + sin x, définie sur [1, +∞[.

Alors f est bornée, donc ln f(x)
ln x

→ 0 > −1.

Mais
∫ x

1 f = 2 x − cos x − 2 + cos 1 et
xf(x) = 2x + x sin x, et ces deux fonctions ne sont
pas équivalentes en +∞.

II.D.1. En posant x = et, qui est bien une bijec-
tion de classe C 1, l’intégrabilité de x 7→ 1

x lnβ x
sur

[2, +∞[ équivaut à celle de t 7→ 1
tβ

sur [ln 2, +∞[.

x 7→ 1
x lnβ x

est intégrable en +∞ si et seulement

si β > 1.

Commentaire. Ces intégrales s’appellent les intégrales
de Bertrand.
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Corrigé du dixième devoir à la maison

II.D.2. Soit f : x 7→ 1
xγ lnβ x

. Elle est de classe C 1

sur [2, +∞[. On a ln f(x) = −γ ln x − β ln ln x, donc

xf ′(x)
f(x) = −x

(
γ

x
+ β

x ln x

)
= −

(
γ + β

ln x

)
→ −γ.

Si −γ < −1, c’est-à-dire γ > 1, on applique II.B.1
et f est intégrable en +∞ ; si −γ > −1, d’après II.C.1,
f n’est pas intégrable en +∞ ; et si γ = 1, on applique
II.D.1.

x 7→ 1
xγ lnβ x

est intégrable en +∞ si et seulement

si (β, γ) ∈
(
R × ]1, +∞[

)
∪

(
]1, +∞[ × {1}

)
.

II.E. Avec les fonctions f : x 7→ 1
x lnβ x

de la ques-

tion II.D.1, pour lesquelles xf ′(x)
f(x) → −1, on voit

que l’on ne peut pas conclure sur l’intégrabilité de f ,
puisque certaines sont intégrables et d’autres ne le
sont pas.

III.A. Pour t ∈ R, h′(t)
h(t) = −α + f ′(t)

f(t) → 0. Alors, il

existe n0 ∈ N∗ tel que, pour n ⩾ n0 et t ∈ [n − 1, n[,∣∣∣∣h′(t)
h(t)

∣∣∣∣ ⩽ ε. Alors, en intégrant entre t et n,∣∣∣∣ln h(n)
h(t)

∣∣∣∣ =
∣∣∣∣∫ n

t

h′(u)
h(u) du

∣∣∣∣
⩽

∫ n

t

∣∣∣∣h′(u)
h(u)

∣∣∣∣ du ⩽ (n − t)ε ⩽ ε.

Par croissance de l’exponentielle,

e−ε ⩽
h(n)
h(t) ⩽ eε d’où e−ε ⩽

h(t)
h(n) ⩽ eε.

Alors (e−ε − 1) h(n) ⩽ h(t) − h(n) ⩽ (eε − 1) h(n)
donc |h(t) − h(n)| ⩽ h(n) max(eε − 1, 1 − e−ε). Mais
1 − e−ε = e−ε (eε − 1) ⩽ eε − 1, donc finalement, on
a l’inégalité demandée.

III.B. On a∫ n

n−1
f(t)dt =

∫ n

n−1
eαt h(t)dt

=
∫ n

n−1
eαt (h(n) + h(t) − h(n))dt

=
∫ n

n−1
eαt h(n)dt +

∫ n

n−1
eαt (h(t) − h(n))dt.

D’une part,∫ n

n−1
eαt h(n)dt = h(n) eαn − eα(n−1)

α

= 1 − e−α

α
f(n).

D’autre part, avec les notations et dans les conditions
de la question précédente,∣∣∣∣∫ n

n−1
eαt (h(t) − h(n))dt

∣∣∣∣
⩽

∫ n

n−1
eαt |h(t) − h(n)|dt

⩽
∫ n

n−1
eαt (eε − 1)h(n)dt

= (eε − 1) 1 − e−α

α
f(n).

Comme ε > 0 est arbitraire, eε − 1 > 0 l’est aussi,
donc∫ n

n−1
eαt (h(t) − h(n))dt = o

(
1 − e−α

α
f(n)

)
.

Alors,
∫ n

n−1
f(t)dt ∼ 1 − e−α

α
f(n).

III.C.1. Les fonctions u et v sont constantes sur
[k − 1, k[, donc leur intégrale vaut cette constante :∫ k

k−1 v =
∫ k

k−1 f et
∫ k

k−1 u = f(k).

III.C.2. Comme f est intégrable en +∞,

lim
n→+∞

∫ n

0
f =

∫ +∞

0
f.

Or, pour n ∈ N, ∫ n

0
f =

n∑
k=1

∫ k

k−1
f,

donc la série
∑ ∫ n

n−1 f converge. D’après III.B,∫ n

n−1
f ∼ 1 − e−α

α
f(n),

donc la série
∑

f(n) converge.

Alors, u est intégrable en +∞, car u > 0 et∫ n

0
u =

n∑
k=1

∫ k

k−1
u =

n∑
k=1

f(k)

admet une limite en +∞.
De même, v est intégrable en +∞, car v > 0 et∫ n

0
v =

n∑
k=1

∫ k

k−1
v =

n∑
k=1

∫ k

k−1
f =

∫ n

0
f

admet une limite en +∞.
Pour n ∈ N,

Rn =
+∞∑

k=n+1
f(n) =

+∞∑
k=n+1

∫ k

k−1
u =

∫ +∞

n

u.

D’après III.B, pour n grand et x ∈ [n − 1, n[,

v(x) =
∫ n

n−1
f ∼ 1 − e−α

α
f(n) = 1 − e−α

α
u(x)
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D’après P.1.a, pour n grand,∫ +∞

n

f =
∫ +∞

n

v

∼ 1 − e−α

α

∫ +∞

n

u = 1 − e−α

α
Rn.

Ainsi, Rn ∼ α

1 − e−α

∫ +∞

n

f.

III.C.3. Selon le même principe, comme f n’est pas
intégrable en +∞,∫ n

0
f =

n∑
k=1

∫ k

k−1
f → +∞,

donc
∑ ∫ n

n−1 f diverge et
∑

f(n) diverge.
u et v sont non intégrables sur R+.
En utilisant les questions précédentes, on a donc

Sn =
∫ n

0
u ∼ α

1 − e−α

∫ n

0
v = α

1 − e−α

∫ n

0
f.

III.D. On peut reprendre tous les calculs des ques-

tions III.A, III.B et III.C, en remplaçant 1 − e−α

α
par 1. La conclusion attendue en découle.

IV.A. Clairement, les trois séries proposées divergent.
Donc le comportement sur [0, 1] ou [0, 2] des fonctions
introduites n’a pas d’importance.

IV.A.1. La fonction f : t 7→ 1
t n’est pas intégrable

en +∞ et vérifie f ′(x)
f(x) = −1

t
→ 0 donc d’après III.D,

n∑
k=1

1
k

∼
∫ n

1

dt

t
= ln n.

IV.A.2. Pour les mêmes raisons,
n∑

k=1
ln k ∼

∫ n

1
ln tdt ∼ n ln n.

IV.A.3. La fonction f : t 7→ 2t ln t n’est pas inté-

grable en +∞ et vérifie f ′(x)
f(x) = ln 2 + 1

t ln t
→ ln 2,

donc d’après III.C.3,
n∑

k=1
2k ln k ∼ ln 2

1 − e− ln 2

∫ n

1
f

= 2 ln 2
∫ n

1
2t ln tdt.

En intégrant par parties,∫ n

1
2t ln tdt = 2n ln n

ln 2 −
∫ n

1

2t

t ln 2 dt.

Comme 2t

t
≪ 2t ln t,

∫ n

1

2t

t
dt ≪

∫ n

1
2t ln tdt.

Finalement,
n∑

k=1
2k ln k ∼ 2 · 2n ln n.

IV.B.1. On considère la fonction en escalier f définie
par f(t) = a⌊t⌋, où ⌊t⌋ est la partie entière de t. De
même, soit g : t 7→ b⌊t⌋. Comme

∑
an converge et

que an ∼ bn,
∑

bn converge. Dire que
∑

an et
∑

bn

convergent équivaut à dire que f et g sont intégrables
sur R+ (voir les raisonnements de la partie III). Or
f ∼ g, donc

Rn(a) =
∫ +∞

n+1
f ∼

∫ +∞

n+1
g = Rn(b).

IV.B.2. Comme
∑

an diverge et que an ∼ bn,
∑

bn

diverge et Sn(a) =
∫ n

0 f ∼
∫ n

0 g = Sn(b).

IV.C.1. Posons Sn =
n∑

k=1

1
k

et un = Sn − ln n :

un − un−1 = 1
n

+ ln
(

1 − 1
n

)
∼ − 1

2n2 .

Alors,
∑

(un − un−1) converge, donc (un) aussi : no-
tons γ sa limite. D’après IV.B.1,

un − γ = −
+∞∑

k=n+1
(uk − uk−1) ∼ 1

2

+∞∑
k=n+1

1
k2 .

La fonction t 7→ 1
t2 est intégrable en +∞, et vérifie

f ′(t)
f(t) → 0. D’après III.D,

+∞∑
k=n+1

1
k2 ∼

∫ +∞

n

dt

t2 = 1
n

.

Alors, un − γ ∼ 1
2n = 1

2n + o( 1
n ).

Ainsi,
n∑

k=1

1
k

= ln n + γ + 1
2n

+ o
(

1
n

)
.

IV.C.2. Posons Sn = ln(n!) =
∑n

k=2 ln k et
un = Sn − (n + 1

2 ) ln n + n. On a

un − un−1 = ln n −
(

n + 1
2

)
ln n + n

+
(

n − 1
2

)
ln(n − 1) − n + 1

=
(

n − 1
2

)
ln

(
1 − 1

n

)
+ 1 ∼ − 1

12n2 .

Pour les mêmes raisons qu’en IV.C.1, (un) tend vers
une limite γ et un − γ = 1

12n
+ o( 1

n
). Alors

Sn = (n + 1
2) ln n − n + γ + 1

12n
+ o( 1

n
)

d’où

n! = exp((n+ 1
2) ln n−n+γ + 1

12n
+ o( 1

n
))

= eγ nn+1/2 e−n exp( 1
12n

+ o( 1
n

)).

En posant δ = eγ , on a bien

n! = δ nn+1/2 e−n (1 + 1
12n

+ o( 1
n

)).

IV.C.3. δ =
√

2π.
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