NOTATIONS

Dans tout le texte, on adopte les notations suivantes :

- Pour tous entiers naturels m, n, on note [m; n] l'ensemble des entiers naturels k vérifiant $m \leq k \leq n$.
- Pour tout entier $n \ge 1$, on pose $n! = 1 \times 2 \times ... \times n$ la factorielle de n. On convient que 0! = 1.
- Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Pour tous $n \in \mathbb{N}^*$ et $m \in \mathbb{N}^*$, $\mathcal{M}_{n,m}(\mathbb{K})$ désigne l'ensemble des matrices à coefficients dans \mathbb{K} ayant n lignes et m colonnes. Si $A \in \mathcal{M}_{n,m}(\mathbb{K})$ et $(i,j) \in [\![1;n]\!] \times [\![1;m]\!]$, on note $[A]_{i,j}$ le coefficient de A appartenant à la i-ème ligne et à la j-ème colonne. La matrice transposée de A est notée $A \in \mathcal{M}_{m,n}(\mathbb{K})$ et sa matrice conjuguée est notée $A \in \mathcal{M}_{m,m}(\mathbb{K})$. Les coefficients de $A \in \mathcal{M}_{m,n}(\mathbb{K})$ et sa matrice conjuguée est notée $A \in \mathcal{M}_{m,m}(\mathbb{K})$. Les coefficients de $A \in \mathcal{M}_{m,n}(\mathbb{K})$

$$\forall (i,j) \in [1,n] \times [1,m], [\overline{A}]_{i,j} = \overline{[A]_{i,j}}.$$

On pose $\mathcal{M}_n(\mathbb{K}) = \mathcal{M}_{n,n}(\mathbb{K})$, et on note I_n la matrice identité de $\mathcal{M}_n(\mathbb{K})$ et 0_n la matrice nulle de $\mathcal{M}_n(\mathbb{K})$. Le déterminant d'une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ sera noté $\det(A)$. Pour tout $k \in \mathbb{N}^*$, on note A^k la puissance k-ème de A et on convient que $A^0 = I_n$.

Quand n = 1, on identifie la matrice $A \in \mathcal{M}_1(\mathbb{K})$ à son unique coefficient $[A]_{1,1} \in \mathbb{K}$.

- Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On note $\mathbb{K}[X]$ le \mathbb{K} -espace vectoriel des polynômes à coefficients réels. Si $P \in \mathbb{K}[X]$, on note $\deg(P)$ le degré de P. Pour tout $k \in \mathbb{N}^*$, $P^{(k)}$ désigne la dérivée k-ème de P. On convient que $P^{(0)} = P$. Pour tout entier $n \geq 0$, on désigne par $\mathbb{K}_n[X]$ le \mathbb{K} -espace vectoriel des polynômes à coefficients dans \mathbb{K} et de degré inférieur ou égal à n.
- Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Toutes les variables aléatoires de cet énoncé sont définies sur cet espace.

Dans toute la suite de cet énoncé, $n \ge 2$ désigne un entier naturel. Pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on note $\operatorname{Spec}(A)$ l'ensemble des valeurs propres complexes de A et on pose

$$\varrho(A) = \max\{|\lambda| \mid \lambda \in \operatorname{Spec}(A)\}.$$

On note $\mathcal{V}(A)$ l'ensemble

$$\mathscr{V}(A) = \{ P \in \mathbb{C}[X] \mid P \neq 0_{\mathbb{C}[X]} \text{ et } P(A) = 0_n \}.$$

(c'est-à-dire l'ensemble des polynômes de $\mathbb{C}[X]$ non nuls et annulateurs de A).

Pour toute suite $u=(u_k)_{k\geqslant 0}$ de nombres complexes, on adopte les notations suivantes

— on note $R_u \in [0, +\infty]$ le rayon de convergence de la série entière $\sum u_k z^k$ et D_u son disque ouvert de convergence défini par

$$D_u = \{ z \in \mathbb{C} \mid |z| < R_u \}.$$

— pour tout $z \in D_u$, on note U(z) (avec U lettre majuscule) la somme

$$U(z) = \sum_{k=0}^{+\infty} u_k z^k.$$

— On convient que $u^{(0)}=u$ et on note $u^{(1)}$ la suite définie par

$$\forall k \in \mathbb{N}, \ u_k^{(1)} = (k+1)u_{k+1},$$

Plus généralement pour tout entier naturel $m \ge 0$, on pose

$$u^{(m+1)} = (u^{(m)})^{(1)}.$$

Pour tout $m \geqslant 0$ et tout $z \in D_{u^{(m)}}$ on pose

$$U^{(m)}(z) = \sum_{k=0}^{+\infty} u_k^{(m)} z^k.$$

— Si $v = (v_k)_{k \ge 0}$ est une autre suite de nombres complexes, on note u + v la suite $(u_k + v_k)_{k \ge 0}$ et $u \star v$ la suite $(w_k)_{k \ge 0}$ de terme général donné par

$$w_k = \sum_{i=0}^k u_i v_{k-i}$$
 pour tout $k \geqslant 0$.

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est compatible avec u si

$$\varrho(A) < R_u.$$

On note $\mathbb{M}_n(u)$ l'ensemble de toutes les matrices de $\mathscr{M}_n(\mathbb{C})$ compatibles avec u:

$$\mathbb{M}_n(u) = \{ A \in \mathscr{M}_n(\mathbb{C}) \mid \varrho(A) < R_u \}.$$

Les parties III et IV de cet énoncé sont majoritairement indépendantes.

PARTIE I : PRÉLIMINAIRES

Soit $u = (u_k)_{k \geqslant 0}$ une suite de nombres complexes.

- (1) Donner une condition nécessaire et suffisante sur R_u pour que $\mathbb{M}_n(u) = \emptyset$ et donner un exemple de u pour laquelle on a cette égalité.
- (2) Montrer que $\mathbb{M}_n(u) \neq \{0_n\}$.
- (3) Montrer que les trois assertions suivantes sont équivalentes
 - (i) $R_u = +\infty$,
 - (ii) $\mathbb{M}_n(u) = \mathscr{M}_n(\mathbb{C}),$
 - (iii) $\mathbb{M}_n(u) \neq \emptyset$ et $\forall A \in \mathbb{M}_n(u), \forall B \in \mathbb{M}_n(u), A + B \in \mathbb{M}_n(u),$

et donner un exemple de suite u vérifiant ces trois assertions et telle que $u_k \neq 0$ pour tout $k \in \mathbb{N}$.

- (4) Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer l'équivalence des deux assertions suivantes
 - (i) $A \in \mathbb{M}_n(v)$ pour toute suite $v = (v_k)_{k \ge 0}$ de \mathbb{C} vérifiant $R_v > 0$.
 - (ii) A est nilpotente (c'est-à-dire il existe $k \in \mathbb{N}^*$ tel que $A^k = 0_n$).
- (5) Montrer que pour tout entier $m \ge 0$, on a

$$D_{u^{(m)}} = D_u.$$

(6) Soit $v = (v_k)_{k \geqslant 0}$ une autre suite de nombres complexes. Montrer que

$$\mathbb{M}_n(u) \cap \mathbb{M}_n(v) \subset \mathbb{M}_n(u+v) \cap \mathbb{M}_n(u \star v).$$

(7) On suppose dans cette question que $0 < R_u \le 1$. Soient $A \in \mathbb{M}_n(u)$ et $B \in \mathbb{M}_n(u)$ deux matrices symétriques telle que AB = BA. Montrer que $AB \in \mathbb{M}_n(u)$.

PARTIE II: FONCTIONS DE MATRICES

Soit $u = (u_k)_{k \geqslant 0}$ une suite de \mathbb{C} telle que $\mathbb{M}_n(u) \neq \emptyset$. Soit $A \in \mathbb{M}_n(u)$.

- (8) Montrer que $\mathcal{V}(A)$ est non vide.
- (9) Soit

$$m = \min\{k \in \mathbb{N} \mid \exists P \in \mathscr{V}(A) \text{ avec deg}(P) = k\}.$$

Montrer qu'il existe un et un seul polynôme $p \in \mathbb{C}[X]$ vérifiant les trois conditions

- (i) $p \in \mathscr{V}(A)$,
- (ii) deg(p) = m,
- (iii) p unitaire.

On note désormais φ_A ce polynôme.

- (10) Soit $P \in \mathcal{V}(A)$. Montrer que φ_A divise P.
- (11) Montrer que les racines de φ_A dans \mathbb{C} sont exactement les valeurs propres de A.
- (12) Montrer que si $A \in \mathcal{M}_n(\mathbb{R})$ alors φ_A est à coefficients réels (c'est-à-dire $\varphi_A \in \mathbb{R}[X]$).

On note désormais $\lambda_1, \dots, \lambda_\ell$ les valeurs propres de A, avec $\lambda_i \neq \lambda_j$ si $i \neq j$. On note $m_1 \geqslant 1, \dots, m_\ell \geqslant 1$ les multiplicités de $\lambda_1, \dots, \lambda_\ell$ respectivement en tant que racines de φ_A . Ainsi on a

$$\varphi_A(X) = (X - \lambda_1)^{m_1} \cdots (X - \lambda_\ell)^{m_\ell}$$

avec

$$m=m_1+\cdots+m_\ell.$$

(13) Montrer que l'application

$$T : P \in \mathbb{C}_{m-1}[X] \mapsto (P(\lambda_1), P'(\lambda_1), \cdots, P^{(m_1-1)}(\lambda_1), \cdots, P(\lambda_{\ell}), P'(\lambda_{\ell}), \cdots, P^{(m_{\ell}-1)}(\lambda_{\ell})) \in \mathbb{C}^m$$

est un isomorphisme et en déduire qu'il existe un et un seul polynôme $Q \in \mathbb{C}_{m-1}[X]$ tel que

$$\forall i \in [1; \ell], \ \forall k \in [0; m_i - 1], \ Q^{(k)}(\lambda_i) = U^{(k)}(\lambda_i).$$

Dans toute la suite, on pose

$$u(A) = Q(A)$$
.

(14) Soit $P \in \mathbb{C}[X]$. Montrer que u(A) = P(A) si et seulement si

$$\forall i \in [1, \ell], \ \forall k \in [0, m_i - 1], \ P^{(k)}(\lambda_i) = U^{(k)}(\lambda_i).$$

(15) Soit $\alpha \in \mathbb{C}$ tel que $|\alpha| < R_u$. Montrer que

$$u(\alpha I_n) = U(\alpha)I_n.$$

(16) On suppose dans cette question uniquement que n=2. Déterminer u(A) dans le cas suivant :

$$A = \left(\begin{array}{cc} \alpha & \gamma \\ 0 & \beta \end{array}\right),$$

où α , β et γ sont des réels fixés avec $\alpha \neq \beta$ et $\{\alpha, \beta\} \subset D_u$. On exprimera les coefficients de u(A) en fonction α , β et γ , $U(\alpha)$ et $U(\beta)$.

- (17) Soit $B \in \mathbb{M}_n(u)$.
 - (a) Montrer qu'il existe un polynôme $R \in \mathbb{C}[X]$ tel que

$$u(A) = R(A)$$
 et $u(B) = R(B)$.

(b) On suppose que $AB \in \mathbb{M}_n(u)$ et $BA \in \mathbb{M}_n(u)$. Montrer que

$$Au(BA) = u(AB)A.$$

(18) Soit $v = (v_k)_{k \ge 0}$ une autre suite de \mathbb{C} telle que $A \in \mathbb{M}_n(v)$. On suppose dans cette question uniquement que les valeurs $\lambda_1, \dots, \lambda_\ell$ sont réelles. Montrer que

$$(u \star v)(A) = u(A)v(A)$$

(après avoir justifié que $A \in \mathbb{M}_n(u \star v)$).

PARTIE III: CAS DE MATRICES DIAGONALISABLES

Soit $u = (u_k)_{k \geqslant 0}$ une suite de \mathbb{C} telle que $\mathbb{M}_n(u) \neq \emptyset$. Soit $A \in \mathbb{M}_n(u)$. On suppose dans toute cette partie que A est diagonalisable dans $\mathscr{M}_n(\mathbb{C})$ et on note $\lambda_1, \dots, \lambda_\ell$ ses valeurs propres avec $\lambda_i \neq \lambda_j$ si $i \neq j$.

(19) Montrer que

$$\varphi_A(X) = (X - \lambda_1) \cdots (X - \lambda_\ell).$$

(20) Pour tout $k \in [1; \ell]$ on définit le polynôme :

$$Q_k^A(X) = \prod_{j=1, j \neq k}^{\ell} \frac{X - \lambda_j}{\lambda_k - \lambda_j}$$

(on notera que les polynômes Q_k^A dépendent de la matrice A).

(a) Montrer que

$$u(A) = \sum_{k=1}^{\ell} U(\lambda_k) Q_k^A(A) .$$

- (b) Montrer que pour tout $k \in [1; \ell]$, $Q_k^A(A)$ est une projection dont on précisera l'image et le noyau.
- (c) En déduire que

$$\sum_{k=1}^{\ell} Q_k^A(A) = I_n.$$

(21) Soit $B \in \mathcal{M}_n(\mathbb{C})$ une matrice inversible. Montrer que

$$u(BAB^{-1}) = Bu(A)B^{-1}.$$

- (22) Soit $D \in \mathcal{M}_n(\mathbb{C})$ une matrice diagonale et $S \in \mathcal{M}_n(\mathbb{C})$ une matrice inversible telles que $A = SDS^{-1}$.
 - (a) Montrer que u(D) est diagonale et que

$$\forall i \in [1; n], [u(D)]_{i,i} = U([D]_{i,i}).$$

(b) En déduire une expression de u(A).

PARTIE IV: APPLICATION À DES CAS PARTICULIERS

Dans cette partie, on suppose que $n \ge 4$. Soit $u = (u_k)_{k \ge 0}$ une suite de $\mathbb C$ vérifiant la condition (C^*) suivante :

$$R_u > 1$$
 (C^*)

(23) Soit $H \in \mathcal{M}_n(\mathbb{C})$ la matrice donnée par

$$H = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}.$$

(a) Déterminer le polynôme φ_H dans ce cas.

(b) Soit $A = H + \alpha I_n$ où $\alpha \in \mathbb{C}$ est tel que $|\alpha| < R_u$. Montrer que

$$u(A) = \sum_{k=0}^{n-1} \frac{U^{(k)}(\alpha)}{k!} H^k$$

et en déduire que

$$u(A) = \begin{pmatrix} U(\alpha) & \frac{U^{(1)}(\alpha)}{1!} & \frac{U^{(2)}(\alpha)}{2!} & \cdots & \frac{U^{(n-1)}(\alpha)}{(n-1)!} \\ 0 & U(\alpha) & \frac{U^{(1)}(\alpha)}{1!} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \frac{U^{(2)}(\alpha)}{2!} \\ \vdots & & \ddots & \ddots & \frac{U^{(1)}(\alpha)}{1!} \\ 0 & \cdots & \cdots & 0 & U(\alpha) \end{pmatrix}.$$

(24) Soit $G \in \mathcal{M}_n(\mathbb{C})$ la matrice définie par

$$G = Y^t Z$$

où $Y, Z \in \mathcal{M}_{n,1}(\mathbb{R})$ sont deux vecteurs colonnes tels que ${}^tY Y = {}^tZ Z = 1$.

- (a) Montrer que G est de rang 1 et donner son image.
- (b) Montrer que 0 et tZY sont les seules valeurs propres de G.
- (c) En déduire que $G \in \mathbb{M}_n(u)$.
- (d) Déterminer φ_G quand ${}^tZY \neq 0$.
- (e) En déduire que si ${}^tZY \neq 0$ alors

$$u(G) = U(0)I_n + \frac{U({}^tZY) - U(0)}{{}^tZY}G.$$

- (f) Déterminer une expression simple de u(G) quand ${}^tZY=0$.
- (25) Soit $F \in \mathcal{M}_n(\mathbb{C})$ la matrice définie par

$$[F]_{k,j} = \frac{1}{\sqrt{n}} \omega^{(k-1)(j-1)} \text{ pour tout } (k,j) \in [1;n]^2,$$

οù

$$\omega = e^{-2\pi i/n}$$

(ici i désigne le nombre complexe usuel vérifiant $i^2 = -1$).

- (a) Montrer que F est inversible et que $F^{-1} = \overline{F}$.
- (b) Montrer que $F^2 \in \mathcal{M}_n(\mathbb{R})$.
- (c) En déduire que $F^4 = I_n$ et que $F \in M_n(u)$.
- (d) En déduire que

$$u(F) = \frac{1}{4} (U(1)(F+I_n) - U(-1)(F-I_n)) (F^2 + I_n) + \frac{i}{4} (U(i)(F+iI_n) - U(-i)(F-iI_n)) (F^2 - I_n).$$

- (26) On suppose que pour tout $k \in \mathbb{N}$, $u_k = \mathbb{P}(X = k)$ où X est une variable aléatoire à valeurs dans \mathbb{N} .
 - (a) On suppose que X suit une loi binomiale de paramètres (N, p). Vérifier que u satisfait la condition (C^*) et trouver une expression simple de u(A) pour tout $A \in \mathbb{M}_n(u)$.

(b) On suppose que X suit un loi géométrique de paramètre $p\in]0,1[$. Vérifier que u satisfait la condition (C^\star) et montrer que

$$u(A) = p(I_n - (1-p)A)^{-1}A$$

pour toute matrice $A \in \mathbb{M}_n(u)$ diagonalisable.