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Corrigé du quatorzième devoir à la maison

1.a. Par récurrence, montrons que Sn ∼ P(n).
L’initialisation est évidente puisque S1 = X1.
Supposons que ce soit vrai pour un rang n. On

a Sn+1 = Sn + Xn+1. Grâce au lemme des coali-
tions que l’énoncé rappelle, Sn et Xn+1 sont indépen-
dantes donc d’après le cours, comme Sn ∼ P(n) et
Xn+1 ∼ P(1), Sn+1 ∼ P(n + 1). La transmission
est acquise.

Alors par récurrence, la propriété est démontrée.
De plus, E(Sn) = V(Sn) = n.

1.b. D’après les propriétés de calcul de l’espérance et
de la variance,

E(S∗
n) = 1√

n
E(Sn − n) = 1√

n
(E(Sn) − n) = 0,

V(S∗
n) = 1

(
√

n )2 V(Sn − n) = 1
n

V(Sn) = 1.

Commentaire. Ainsi, S∗
n est une variable aléatoire

réelle réduite centrée.

1.c. Soit n ∈ N∗. On a

P(S∗
n ⩽ 0) = P

(
Sn − n√

n
⩽ 0

)
= P(Sn − n ⩽ 0)

= P(Sn ⩽ n) =
n∑

k=0
P(Sn = k)

=
n∑

k=0
e−n nk

k! = e−n
n∑

k=0

nk

k! .

2. Il s’agit d’utiliser cette formule de Taylor avec reste
intégral pour la fonction exponentielle sur le segment
[0, n] à l’ordre n : sachant que l’exponentielle est sa
propre dérivée, et qu’elle vaut 1 en 0, on a directement

en =
n∑

k=0
1 · (n − 0)k

k! +
∫ n

0
et (n − t)n

n! dt

=
n∑

k=0

nk

k! +
∫ n

0
en−t tn

n! dt,

où l’on a changé t en n − t dans l’intégrale.

3.a. En divisant par en, on a donc

1 = e−n
n∑

k=0

nk

k! +
∫ n

0
e−t tn

n! dt

d’où clairement,

P(S∗
n ⩽ 0) = e−n

n∑
k=0

nk

k! = 1 −
∫ n

0
e−t tn

n! dt.

3.b. Soit n ∈ N∗. D’après la question précédente,

P(S∗
n ⩽ 0) − P(S∗

n+1 ⩽ 0)

= −
∫ n

0
e−t tn

n! dt +
∫ n+1

0
e−t tn+1

(n + 1)! dt

= −
∫ n

0
e−t tn

n! dt +
∫ n

0
e−t tn+1

(n + 1)! dt

+
∫ n+1

n

e−t tn+1

(n + 1)! dt.

En intégrant par parties,∫ n

0
e−t tn+1

(n + 1)! dt

=
[
−e−t tn+1

(n + 1)!

]n

0
+

∫ n

0
e−t tn

n! dt

= −e−n nn+1

(n + 1)! +
∫ n

0
e−t tn

n! dt.

Ainsi,

P(S∗
n ⩽ 0) − P(S∗

n+1 ⩽ 0)

=
∫ n+1

n

e−t tn+1

(n + 1)! dt − e−n nn+1

(n + 1)! .

3.c. Pour n ∈ N∗, la fonction t 7→ e−t tn+1

(n + 1)! décroit

sur [n, n + 1] donc elle y est majorée par sa valeur
en n. Ainsi, en majorant l’intégrale,

P(S∗
n ⩽ 0) − P(S∗

n+1 ⩽ 0)

⩽
∫ n+1

n

e−n nn+1

(n + 1)! dt − e−n nn+1

(n + 1)! = 0.

Cela signifie que la suite (P(S∗
n ⩽ 0))n∈N∗ décroit.

Et comme elle est dans [0, 1], elle est minorée par 0,
donc elle converge vers une limite ℓ ∈ [0, 1[.

La limite 1 est exclue car la suite décroit et

P(S∗
1 ⩽ 0) = e−1

1∑
k=0

1k

k! < e−1
+∞∑
k=0

1k

k! = 1.

3.d. Je ne vois pas trop ce que l’énoncé attend. Voici
néanmoins deux démarches possibles.

Méthode probabiliste. On approche ℓ par
P(S∗

n ⩽ 0), pour n « grand ». Pour cela, on simule
un tirage aléatoire de S∗

n ; on compte le nombre d’oc-
currences négatives, que l’on divise par le nombre de
tirages ; et l’on a une approximation de P(S∗

n ⩽ 0),
donc de ℓ. Cette démarche a l’avantage de la simpli-
cité de mise en œuvre, mais présente l’inconvénient
de la simulation du hasard.

Méthode numérique. On approche ℓ par

e−n
n∑

k=0

nk

k! .
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Ici, on s’affranchit de la simulation du hasard, mais
l’on manie des puissances et des factorielles qui aug-
mentent avec n.
Erreur de méthode. Dans les deux démarches, il
faudrait de toute façon majorer proprement l’erreur
commise, ce qui dépasse le cadre du devoir.

4.a. D’après la question 1.a, on sait que Sn ∼ P(n),
donc d’après le cours,

pour tout t ∈ R, GSn
(t) = en(t−1).

4.b. Soit t ∈ R∗
+. D’après le théorème de transfert,

la variable aléatoire tS∗
n admet une espérance si et

seulement si la série∑
n⩾1

P(Sn = k) t(k−n)/
√

n.

converge absolument. Pour k ∈ N,

P(Sn = k) t(k−n)/
√

n = 1
t
√

n
P(Sn = k)(t1/

√
n)k.

Or, le rayon de convergence de la série entière∑
k⩾0 P(Sn = k)xk est +∞, donc pour tout t > 0,∑
k⩾0 P(Sn = k)(t1/

√
n)k converge absolument. Alors

tS∗
n admet une espérance et

E(tS∗
n) = GSn

(t1/
√

n)
t
√

n
.

4.c. Soit t > 0 fixé. On a

GSn(t1/
√

n)
t
√

n
= 1

t
√

n
exp

(
n(t1/

√
n − 1)

)
.

Par ailleurs, quand n est grand,

t1/
√

n − 1 = eln t/
√

n − 1 = ln t√
n

− ln2 t

2n
+ o

(
1
n

)
.

Donc

GSn(t1/
√

n)
t
√

n
= exp

(
−(ln t)

√
n

)
× exp

(
n

(
ln t√

n
− ln2 t

2n
+ o

(
1
n

)))
= exp

(
− ln2 t

2 + o(1)
)

.

Donc lim
n→+∞

E(tS∗
n) = e− 1

2 ln2 t.
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