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Corrigé du quinzième devoir à la maison

Q1. Soit x ∈ ]0, +∞[. La série
∑

k⩾0 φk(x) est alter-
née. Clairement, la suite (1/(x + k)2)k⩾0 décroit vers 0.
Grâce au théorème spécial des séries alternées, la série∑

k⩾0 φk(x) converge. Ainsi,
la série de fonctions

∑
k⩾0 φk converge simplement

sur ]0, +∞[.

Q2. Soit x ∈ ]0, +∞[. On a

φ(x + 1) + φ(x)

=
+∞∑
k=0

(−1)k

(x + 1 + k)2 +
+∞∑
k=0

(−1)k

(x + k)2

=
+∞∑
k=0

(
(−1)k

(x + k)2 − (−1)k+1

(x + (k + 1))2

)
= 1

x2 ,

où l’on a reconnu une série télescopique. Bien-sûr, le
calcul est permis puisque toutes les sommes manipulées
convergent.

Q3. La seconde conclusion du théorème spécial des sé-
ries alternées affirme que le reste de la série alternée est
majoré par son premier terme, en valeur absolue, ce qui
est exactement l’assertion de l’énoncé.

Q4. ◦ Grâce à cette majoration, pour tout x ∈ ]0, +∞[
et tout n ∈ N, ∣∣∣∣∣

+∞∑
k=n+1

φk(x)

∣∣∣∣∣ ⩽ 1
(n + 1)2 .

Ce majorant tend vers 0 et ne dépend pas de x, donc la
suite des restes de la série alternée converge uniformé-
ment sur ]0, +∞[ vers la fonction nulle. Ainsi, la série∑

k⩾0 φk converge uniformément sur ]0, +∞[.
◦ En outre, les φk tendent toutes vers 0 en +∞.

D’après le théorème de la double limite,
• la série de ces limites converge, ce qui n’est pas une
surprise,
• et φ admet une limite en +∞, qui vaut la somme de
la série des limites : autrement dit,

lim
x→+∞

φ(x) =
+∞∑
k=0

lim
x→+∞

φk(x) = 0.

Il s’ensuit que φ vérifie la première condition du pro-
blème (P). Et d’après la question Q2, elle en vérifie aussi
la seconde.

Alors φ est solution du problème (P).

Q5. Considérons une solution f du problème (P). Nom-
mons P(n) la relation de l’énoncé et prouvons-la par
récurrence.
Initialisation. D’après la seconde condition de (P), pour
tout x ∈ ]0, +∞[,

f(x) = −f(x + 1) + 1
x2 .

Ainsi, P(0) est vraie.

Hérédité. Supposons que P(n) soit vraie pour un certain
n ∈ N. Toujours grâce à la seconde condition de (P),
pour tout x > 0,

f(x + n + 2) + f(x + n + 1) = 1
(x + n + 1)2 .

Alors, d’après l’hypothèse P(n),

f(x) = (−1)n+1 f(x + n + 1) +
n∑

k=0

(−1)k

(x + k)2

= (−1)n+1
(

−f(x + n + 2) + 1
(x + n + 1)2

)
+

n∑
k=0

(−1)k

(x + k)2

= (−1)n+2 f(x + n + 2) +
n+1∑
k=0

(−1)k

(x + k)2 ,

ce qui prouve P(n + 1).
Conclusion. D’après le principe de récurrence, l’assertion
de l’énoncé est démontrée.

Q6. Faisons tendre n vers +∞ dans cette relation. Soit
x > 0.

Soit x > 0. Par définition,

lim
n→+∞

n∑
k=0

(−1)k

(x + k)2 =
+∞∑
k=0

(−1)k

(x + k)2 = φ(x).

Et puisque f est solution de (P),
lim

n→+∞
f(x + n + 1) = 0.

Alors, :
f(x) = lim

n→+∞
f(x)

= lim
n→+∞

f(x + n + 1) + lim
n→+∞

n∑
k=0

(−1)k

(x + k)2

= 0 + φ(x).
Donc f = φ.

Avec la question Q4, (P) admet une solution, φ. Avec
cette question Q6, cette solution est unique.

Ainsi, le problème (P) admet une unique solution, la
fonction φ.

Q7. Soit ε > 0. On a déjà prouvé à la question Q4 que∑
k⩾0 φk converge uniformément sur ]0, +∞[.
Donc elle converge uniformément sur [ε, +∞[.

Q8. Puisque les φk sont continues sur ]0, +∞[, et grâce
à la convergence uniforme précédente (sur ]0, +∞[),
d’après le théorème de continuité des séries de fonctions,

φ est continue sur ]0, +∞[.
Commentaire. Puisque la convergence uniforme est ac-
quise sur ]0, +∞[, l’intervention d’ε est inutile. Peut-être
l’énoncé a-t-il voulu s’écarter de 0 car φ0 n’est pas bor-
née sur ]0, +∞[. Mais ça n’a pas d’importance puisque
les restes, eux, sont tous bornés sur ]0, +∞[, grâce à la
question Q4.
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Corrigé du quinzième devoir à la maison

Q9. Utilisons le théorème de la classe C 1 des séries de
fonctions.
◦ Les φk sont bien de classe C 1 sur ]0, +∞[.
◦ Avec la question Q1,

∑
k⩾0 φk converge simplement

sur ]0, +∞[.
◦ Pour tout x > 0 et tout k ∈ N,

φ′
k(x) = 2(−1)k+1

(x + k)3 .

On voit que la suite (|φ′
k(x)|)k⩾0 décroit vers 0.

Donc d’après le théorème spécial des séries alter-
nées,

∑
k⩾0 φ′

k(x) converge. Cela signifie que
∑

k⩾0 φ′
k

converge simplement sur ]0, +∞[. En outre, pour tout
n ∈ N,∣∣∣∣∣

+∞∑
k=n+1

φ′
k(x)

∣∣∣∣∣ ⩽ |φ′
n+1(x)| = 2

(x + n + 1)3

⩽
2

(n + 1)3 .

Ce majorant ne dépend pas de x et tend vers 0 avec n,
donc

∑
k⩾0 φ′

k converge uniformément sur ]0, +∞[.
Alors, d’après le théorème évoqué,

• φ est de classe C 1 sur ]0, +∞[
• et pour tout x > 0,

φ′(x) =
+∞∑

k=n+1

2(−1)k+1

(x + k)3 .

Q10. Toujours grâce au théorème spécial des séries al-
ternées, cette somme est du signe de son premier terme,
qui est négatif. Donc φ′ ⩽ 0 et

φ décroit sur ]0, +∞[.

Q11. Soit x > 1. Utilisons deux fois la seconde propriété
de (P) :

φ(x + 1) + φ(x) = 1
x2 ,

φ(x) + φ(x − 1) = 1
(x − 1)2 .

Comme φ décroit, φ(x + 1) ⩽ φ(x) ⩽ φ(x − 1), d’où
1
x2 ⩽ 2φ(x) ⩽ 1

(x − 1)2 .

On en tire que

φ(x) ∼
x→+∞

1
2x2 .

Q12. La fonction fk : t 7→ tx+k−1 ln(t) est clairement
continue sur ]0, 1]. De plus, pour t ∈ ]0, 1],

|fk(t)| = tx+k−1 |ln(t)| = tk+x/2 |ln(t)|
t1−x/2 .

Comme k ⩾ 0 et x > 0, k + x/2 > 0 donc
limt→0 tk+x/2 |ln(t)| = 0 et pour t proche de 0,

|fk(t)| ≪ 1
t1−x/2 .

Or x > 0 donc 1 − x/2 < 1 et d’après les intégrales de
Riemann, t 7→ 1/t1−x/2 est intégrable sur ]0, 1], donc

fk est intégrable sur ]0, 1].

Faisons une intégration par parties :∫ 1

0
tx+k−1 ln(t)dt =

[
tx+k

x + k
ln(t)

]1

0
−

∫ 1

0

tx+k

x + k

1
t

dt.

Comme x + k > 0, limt→0 tx+k ln(t) = 0 donc le cro-
chet a un sens et vaut 0. Bien-sûr, l’intégrale de départ
converge, puisque fk est intégrable sur ]0, 1]. Alors, l’in-
tégration par parties est valide. Ainsi,∫ 1

0
tx+k−1 ln(t)dt = −

∫ 1

0

tx+k−1

x + k
dt = − 1

(x + k)2 .

Q13. Soit x > 0. Voici un calcul formel que l’on justi-
fiera ensuite.

φ(x) =
+∞∑
k=0

(−1)k

(x + k)2(1)

= −
+∞∑
k=0

(−1)k

∫ 1

0
tx+k−1 ln(t)dt(2)

= −
∫ 1

0
tx−1 ln(t)

+∞∑
k=0

(−1)k tk dt(3)

= −
∫ 1

0

tx−1 ln(t)
1 + t

dt.(4)

Justifions ce calcul.
(1) C’est la définition de φ.
(2) C’est la question précédente.
(4) C’est le développement en série entière usuel

1
1 + t

=
+∞∑
k=0

(−1)k tk,

valable sur [0, 1[.
(3) Pour justifier cette permutation, utilisons le théorème
d’intégration des séries de fonctions sur un intervalle.
Considérons les fonctions gk = (−1)k fk, où les fk sont
définies à la question précédente.
◦ D’après la question Q12, pour tout k ∈ N, gk est
intégrable sur ]0, 1].
◦ D’après (4), la série

∑
k⩾0 gk converge simplement

sur ]0, 1[ et a pour somme

t 7→ tx−1 ln(t)
1 + t

.

◦ Bien-sûr, cette fonction est continue sur ]0, 1[.
◦ Enfin, d’après la question Q12, pour tout k ∈ N,∫ 1

0
|gk(t)|dt = 1

(x + k)2 ∼
k→+∞

1
k2 .

Comme la série de Riemann
∑

1/k2 converge, la série∑ ∫ 1
0 |gk| converge.

D’après le théorème invoqué,

• la fonction t 7→ tx−1 ln(t)
1 + t

est intégrable sur ]0, 1[

• et la permutation (3) est permise.
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