
07 01 26

Corrigé du seizième devoir à la maison

Questions de cours. Naturellement, je renvoie au
cours pour les preuves et les contre-exemples :-).
C.1.1. Bien-sûr que non !
C.1.2. Oui.
C.1.3. Non, il manque cruellement l’hypothèse de la
positivité des termes.
C.1.4. Toujours non, c’est la notion de série semi-
convergente.
C.2. La suite (ln n/n) converge vers 0. De plus, elle
décroit à partir du rang 3, comme le prouve une ra-
pide étude de la fonction x 7→ ln x/x. Donc d’après
le critère spécial des séries alternées,∑

n⩾2
(−1)n ln n

n
converge.

P.1.1. Pour tout k > N , |tk| ⩽ ε, donc∣∣∣∣∣
n∑

k=N+1
tk

∣∣∣∣∣ ⩽
n∑

k=N+1
|tk| ⩽

n∑
k=N+1

ε

= (n − (N + 1) + 1)ε

= (n − N)ε ⩽ nε.

P.1.2. L’entier N étant fixé, la somme
∑N

k=0 tk est
constante, donc la suite(

1
n + 1

N∑
k=0

tk

)
n>N

tend vers 0. Alors, il existe un entier P > N tel que
pour tout n > P ,

1
n + 1

∣∣∣∣∣
N∑

k=0
tk

∣∣∣∣∣ ⩽ ε.

Ainsi, pour tout entier n > P , n > N , donc

|Tn| =

∣∣∣∣∣ 1
n + 1

N∑
k=0

tk + 1
n + 1

n∑
k=N+1

tk

∣∣∣∣∣
⩽

1
n + 1

∣∣∣∣∣
N∑

k=0
tk

∣∣∣∣∣+ 1
n + 1

∣∣∣∣∣
n∑

k=N+1
tk

∣∣∣∣∣
⩽ ε + 1

n + 1 nε ⩽ 2ε.

On vient de prouver que
∀ε > 0, ∃P ∈ N, ∀n ∈ N, n > P =⇒ |Tn| ⩽ 2ε,

ce qui signife que (Tn) tend vers 0.

P.2. Soit une suite (tn) tendant vers T . Alors la suite
(vn) tend vers 0, où vn = tn − T . D’après la question
précédente, la suite (Vn) tend vers 0, où

Vn = 1
n + 1

n∑
k=0

vk = 1
n + 1

n∑
k=0

(tk − T )

= 1
n + 1

n∑
k=0

tk − 1
n + 1

n∑
k=0

T = Tn − T.

Finalement, si (tn) tend T , (Tn) aussi.

Commentaire. On vient de démontrer le théorème dit
de Cesàro.

P.3.1. C’est un calcul classique. Soit n ∈ N. On a
n∑

k=0
cos(k θ) = Re

(
n∑

k=0
eikθ

)
.

Or eiθ ̸= 1 car θ ∈ ]0, 2π[, donc
n∑

k=0
eikθ = 1 − ei(n+1)θ

1 − eiθ

= ei(n+1) θ
2 (e−i(n+1) θ

2 − ei(n+1) θ
2 )

ei θ
2 (e−i θ

2 − ei θ
2 )

= ein θ
2

−2 i sin((n + 1) θ
2 )

−2 i sin( θ
2 )

.

Tn = 1
n + 1 Re

(
ein θ

2
sin((n + 1) θ

2 )
sin( θ

2 )

)
Alors

= 1
n + 1 cos(n θ

2 )
sin((n + 1) θ

2 )
sin( θ

2 )
.

P.3.2. Pour tout n ∈ N,

|Tn| = 1
n + 1 |cos(n θ

2 )|
|sin((n + 1) θ

2 )|
|sin( θ

2 )|

⩽
1

n + 1
1

|sin( θ
2 )|

donc (Tn) tend vers 0.

P.3.3. Pour θ = π
3 et p ∈ N, t3p = cos(pπ) = (−1)p.

Ainsi, la suite (t3p)p∈N diverge. Autrement dit, la
suite (tn) admet une suite extraite qui diverge,

donc (tn) diverge.

P.3.4. Il s’ensuit que la réciproque du théorème de
la question P.2 est fausse.

1.1. La suite (nan) est bornée car elle converge :
∃K ⩾ 0, ∀n ∈ N∗, |nan| ⩽ K.

L’hypothèse (i) signifie que an = o( 1
n ), et l’on vient

d’en déduire que an = O( 1
n ).

1.2. Soit x ∈ [0, 1[. On a

|an xn| = |an|xn ⩽ n |an|xn ⩽ K xn.

Or la série
∑

xn converge, comme série géométrique
de raison x ∈ [0, 1[. Alors, par comparaison des séries
à termes positifs, la série

∑
|an xn| converge, donc

pour x ∈ [0, 1[, la série
∑

an xn converge
absolument.
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1.3. Soient n ∈ N et x ∈ [0, 1[. Selon un principe clas-
sique, on introduit dans un des termes intermédiaires,
ici
∑+∞

k=0 ak xk et
∑n

k=0 ak xk :

un = L −
+∞∑
k=0

ak xk +
+∞∑
k=0

ak xk

−
n∑

k=0
ak xk +

n∑
k=0

ak xk −
n∑

k=0
ak

= L − f(x) +
+∞∑

k=n+1
ak xk +

+∞∑
k=0

ak (xk − 1).

1.4.1. Soit n ∈ N. La suite (kak)k⩾0 est bornée, donc
aussi la suite (k ak)k⩾n. Alors la borne supérieure

Mn = supk⩾n(|k ak|) existe.

1.4.2. Soit ε > 0.
La suite (k ak)k⩾0 converge vers 0 donc il existe

N ∈ N tel que pour tout k ⩾ N , |k ak| ⩽ ε.
Soit n ⩾ N . Pour tout k ⩾ n, k ⩾ N donc

|k ak| ⩽ ε. Alors ε est un majorant de la suite
(|k ak|)k⩾n, donc Mn ⩽ ε, car Mn est le plus petit
des majorants de cette suite.

On vient de prouver que
∀ε > 0, ∃N ∈ N, ∀n ∈ N, n ⩾ N =⇒ Mn ⩽ ε,

c’est-à-dire que (Mn) converge vers 0.

1.5. Soient n ∈ N et x ∈ [0, 1[. On a

|un| ⩽ |L − f(x)| +

∣∣∣∣∣
n∑

k=0
ak (xk − 1)

∣∣∣∣∣+

∣∣∣∣∣
+∞∑

k=n+1
ak xk

∣∣∣∣∣.
D’une part,∣∣∣∣∣

n∑
k=0

ak (xk − 1)

∣∣∣∣∣ ⩽
n∑

k=0
|ak (xk −1)| =

n∑
k=0

|ak|(1−xk).

On a 1 − x0 = 0 et pour k ∈ [[1, n]], comme x < 1,

1 − xk = (1 − x)
k−1∑
j=0

xj ⩽ (1 − x)
k−1∑
j=0

1 = (1 − x)k.

Alors,
n∑

k=0
|ak|(1 − xk) ⩽ (1 − x)

n∑
k=0

k |ak|.

D’autre part,∣∣∣∣∣
+∞∑

k=n+1
ak xk

∣∣∣∣∣ ⩽
+∞∑

k=n+1
|ak|xk =

+∞∑
k=n+1

k |ak| xk

k
.

Mais pour tout k ⩾ n + 1, k ⩾ n donc k |ak| ⩽ Mn et
1
k ⩽ 1

n . Alors∣∣∣∣∣
+∞∑

k=n+1
ak xk

∣∣∣∣∣ ⩽
+∞∑

k=n+1
Mn

xk

n
= Mn

n

+∞∑
k=n+1

xk.

Or, en reconnaissant une somme géométrique de rai-
son x et de premier terme xn+1,

+∞∑
k=n+1

xk = xn+1

1 − x
.

Ainsi, comme x < 1,∣∣∣∣∣
+∞∑

k=n+1
ak xk

∣∣∣∣∣ ⩽ Mn

n

xn+1

1 − x
⩽

Mn

n(1 − x) .

Finalement,

|un| ⩽ |L − f(x)| +
n∑

k=0
|ak|(1 − xk) + Mn

n(1 − x)

⩽ |L − f(x)| + (1 − x)
n∑

k=0
k |ak| + Mn

n(1 − x) .

1.6. Pour x = 1 − 1
n , cette majoration devient

|un| ⩽
∣∣∣∣L − f

(
1 − 1

n

)∣∣∣∣+ 1
n

n∑
k=0

k |ak| + Mn.

D’après (ii), lim
x→1−

f(x) = L donc

lim
n→+∞

f

(
1 − 1

n

)
= L

et lim
n→+∞

∣∣∣∣L − f

(
1 − 1

n

)∣∣∣∣ = 0.

D’après P.1.2, comme la suite (k |ak|) tend vers 0,

1
n

n∑
k=0

k |ak| = n + 1
n

1
n + 1

n∑
k=0

k |ak| −−−−−→
n→+∞

0.

Enfin, d’après 1.4.2, la suite (Mn) tend vers 0.
Ainsi, on a majoré |un| par le terme général d’une

suite qui tend vers 0, donc (un) tend vers 0.

1.7. Dire que (un) tend vers 0 signifie que la suite
(
∑n

k=0 ak) converge vers L, ce qui par définition, si-
gnifie que la série

∑
an converge et a pour somme L.

Autrement dit, on peut remplacer x par 1 dans la
définition de f : f est prolongeable en 1. En vertu
de la propriété (ii), la fonction ainsi prolongée est
continue en 1.

Finalement, f se prolonge par continuité en 1 en
posant f(1) =

∑+∞
n=0 an = L.

2.1. Pour appliquer la théorie du cours, il est néces-
saire que les fonctions x 7→ 4 x2, x 7→ 4 x, x 7→ −1
et x 7→ x/(1 − x) soient continues sur l’intervalle de
résolution, lequel ne peut donc pas contenir 1. En
outre, dans le cadre du théorème de Cauchy-Lipschitz,
la fonction x 7→ 4x2 ne doit pas s’annuler, donc l’in-
tervalle de résolution ne peut contenir 0.

Ainsi, on peut résoudre (E) sur tout intervalle ne
contenant ni 0, ni 1.

Commentaire. Cela dit, en sortant du cadre du théo-
rème de Cauchy-Lipschitz, il est permis de chercher
les solutions de (E) développables en série entière
autour de 0, donc sur un intervalle centré en 0, mais
qui ne pourrait toujours pas contenir 1.
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2.2. D’après le cours,
l’ensemble des solutions de (E) sur I = ]0, 1[ est
un plan affine, dirigé par le plan vectoriel des
solutions de l’équation homogène associée.

2.3. D’après le cours, les séries géométriques
∑

xn et∑
(−1)n xn convergent si et seulement si |x| < 1, et

l’on a, pour tout x ∈ ]−1, 1[,

1
1 − x

=
+∞∑
n=0

xn et 1
1 + x

=
+∞∑
n=0

(−1)n xn.

2.4. Raisonnons par analyse-synthèse.
Analyse. Supposons que (E) admette une solution

développable en série entière y(x) =
∑+∞

n=0 an xn, de
rayon de convergence R > 0. Sur ]−R, R[, y est de
classe C ∞ et pour tout x ∈ ]−R, R[,

y′(x) =
+∞∑
n=1

nanxn−1 et y′′(x) =
+∞∑
n=2

n(n−1)anxn−2.

Par ailleurs, pour tout x ∈ ]−1, 1[,

x

1 − x
=

+∞∑
n=1

xn.

Alors, en posant r = min{1, R}, pour tout x ∈ ]−r, r[,

4x2 y′′(x) + 4xy′(x) − y(x) = x

1 − x

⇐⇒ 4x2
+∞∑
n=2

n(n − 1)an xn−2 + 4x

+∞∑
n=1

nan xn−1

−
+∞∑
n=0

an xn =
+∞∑
n=1

xn

⇐⇒ 4
+∞∑
n=2

n(n − 1)an xn + 4
+∞∑
n=1

nan xn

−
+∞∑
n=0

an xn =
+∞∑
n=1

xn

⇐⇒
+∞∑
n=1

4n(n − 1)an xn +
+∞∑
n=1

4nan xn

−
+∞∑
n=1

an xn − a0 =
+∞∑
n=1

xn

⇐⇒
+∞∑
n=1

(4n2 − 1)an xn − a0 =
+∞∑
n=1

xn

Par unicité du développement en série entière de la
fonction x 7→ x/(1 − x), a0 = 0 et pour tout n ∈ N∗,
(4n2 − 1)an = 1 ou encore

an = 1
4n2 − 1 .

Synthèse. Considérons la série entière∑
n⩾1

xn

4n2 − 1 .

Comme son coefficient général est une fraction ra-
tionnelle en n, le rayon de convergence de cette série
entière est le même que celui de la série entière

∑
xn,

c’est-à-dire 1. Il n’est pas nul et la synthèse est validée.
Ainsi, l’équation (E) admet une unique solution
développable en série entière, la fonction

x ∈ ]−1, 1[ 7→
+∞∑
n=1

xn

4n2 − 1 .

Son rayon de convergence est 1.

2.5.1. Sans difficulté, pour tout n ⩾ 1,
1

4n2 − 1 = 1
2(2n − 1) − 1

2(2n + 1) .

2.5.2. La fonction h est somme d’une série entière
dont le rayon de convergence est clairement 1. Alors,
elle est de classe C 1 sur I et pour tout u ∈ I,

h′(u) =
+∞∑
n=0

u2n = 1
1 − u2 = 1

2

(
1

1 − u
+ 1

1 + u

)
.

Puisque h(0) = 0, pour tout u ∈ I,

h(u) = 1
2(− ln(1 − u) + ln(1 + u)) = 1

2 ln 1 + u

1 − u
.

2.5.3. Soit x ∈ I. Comme x > 0, on peut poser
u =

√
x, c’est-à-dire x = u2. On a

H(x) =
+∞∑
n=0

u2n

2n + 1 = 1
u

+∞∑
n=0

u2n+1

2n + 1 = h(u)
u

= 1
2u

ln 1 + u

1 − u
= 1

2
√

x
ln 1 +

√
x

1 −
√

x
.

2.5.4. Soit x ∈ I. On a

φ(x) = 1
2

+∞∑
n=1

xn

2n − 1 − 1
2

+∞∑
n=1

xn

2n + 1 .

D’une part,
+∞∑
n=1

xn

2n + 1 =
+∞∑
n=0

xn

2n + 1 − 1 = H(x) − 1.

D’autre part, en translatant l’indice,
+∞∑
n=1

xn

2n − 1 =
+∞∑
n=0

xn+1

2n + 1 = xH(x).

Alors φ(x) = 1
2 (x − 1)H(x) + 1

2

= 1
2 + x − 1

4
√

x
ln 1 +

√
x

1 −
√

x
.

2.5.5. Soit x ∈ I. On peut écrire

φ(x) = 1
2 + x − 1

4
√

x
ln(1 +

√
x )

+ 1 +
√

x

4
√

x
(1 −

√
x ) ln(1 −

√
x ).

3 4



Corrigé du seizième devoir à la maison

Or, en posant y = 1 −
√

x,

lim
x→1−

(1 −
√

x ) ln(1 −
√

x ) = lim
y→0+

y ln y = 0.

Donc limx→1− φ(x) = 1
2 = L.

2.6.1. Clairement, la suite (n an) tend vers 0 donc
(an) vérifie (i). D’après la question précédente, la
suite (an) vérifie aussi (ii).

2.6.2. D’après la question 1.7,
∑

an converge et a
pour somme

∑+∞
n=1 an = L = 1

2 .

Alors S =
∑+∞

n=0 an = −1 + 1
2 = − 1

2 .

2.7. Soit n ⩾ 1. D’après la question 2.5.1,

Sn = 1
2

(
n∑

k=1

1
2k − 1 −

n∑
k=1

1
2k + 1

)

= 1
2

(
n−1∑
k=0

1
2k + 1 −

n∑
k=1

1
2k + 1

)

= 1
2

(
1 − 1

2n + 1

)
.

Où l’on voit clairement que (Sn) converge vers 1
2 ,

donc
∑

n⩾1 an converge et a pour somme 1
2 .

On retrouve S = − 1
2 .

3.1. Non. En effet, en nous inspirant de la ques-
tion P.3.3, considérons la suite (cn) définie par

cn = (−1)n. La série
∑

(−1)n diverge grossièrement.
Pourtant, pour tout x ∈ ]−1, 1[,

h(x) =
+∞∑
n=0

(−1)n xn = 1
1 + x

−−−−→
x→1−

1
2 ,

et la suite (cn) vérifie les hypothèses requises.

3.2. Comme les ck sont positifs, pour x ∈ [0, 1[,
n∑

k=0
ck xk ⩽

+∞∑
k=0

ck xk = h(x).

En passant à la limite quand x tend vers 1,
n∑

k=0
ck ⩽ H.

Ainsi, les sommes partielles de la série à termes posi-
tifs

∑
ck sont majorées, donc

∑
cn converge.

Soit S sa somme. On a S ⩽ H car H majore les
sommes partielles de

∑
cn. En outre, comme x < 1,

h(x) =
+∞∑
k=0

ck xk ⩽
+∞∑
k=0

ck = S.

En passant toujours à la limite sur x, H ⩽ S. Ainsi,

lim
x→1
x<1

h(x) =
+∞∑
n=0

cn.

3.3. D’après la partie 1, il suffit de rajouter l’hypo-
thèse (i), à savoir que la suite (ncn) tend vers 0.
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