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Corrigé du seizieme devoir a la maison

Questions de cours. Naturellement, je renvoie au
cours pour les preuves et les contre-exemples :-).
C.1.1. Bien-siir que non!

C.1.2. Oui.

C.1.3. Non, il manque cruellement ’hypothese de la
positivité des termes.

C.1.4. Toujours non, c’est la notion de série semi-
convergente.

C.2. La suite (Inn/n) converge vers 0. De plus, elle
décroit a partir du rang 3, comme le prouve une ra-
pide étude de la fonction x — Inz/x. Donc d’apres
le critere spécial des séries alternées,

1
Z (=" an converge.
n

n>=2
P.1.1. Pour tout k > N, |tx] < e, donc
n
> > s Y -
k=N+1 k=N+1 k=N+1

=n—-(N+1)+1)e
=(n—N)e < ne.

P.1.2. L’entier N étant fixé, la somme Zszo ty est
constante, donc la suite

K k=0 n>N

tend vers 0. Alors, il existe un entier P > N tel que
pour tout n > P,

N
Ztk <€.
n+1 P
Ainsi, pour tout entier n > P, n > N, donc
1 O R
Tl = |—=> st ——= D>
1= n+1k:N+1
1 |Q 1 u
Dt + o] Dt
n+ 1= ntl k=N+1
1
e < 2¢.
n—i—ln =

On vient de prouver que
Ve>0,3PeN,VneN, n> P = |T,| < 2¢,

ce qui signife que | (7},) tend vers 0.

P.2. Soit une suite (¢,) tendant vers T'. Alors la suite
(vp) tend vers 0, ot v, = t, — T. D’apres la question
précédente, la suite (V ) tend vers 0, ou

Vnz

n

| Finalement, si (t,) tend T, (T;,) aussi.

Commentaire. On vient de démontrer le théoreme dit
de CESARO.

P.3.1. C’est un calcul classique. Soit n € N. On a

icos(k@) = Re(ie”‘ﬂ).
k=0 k=0

€' # 1 car 6 €]0,27[, donc
zn:e““" 1l
1—¢f
k=0

ei(n+1) g( —i(n+1)§ _ i(n+1)g)

€% (e7i3 —¢l3)
o —2isin((n+1)9)

—2isin($)
Alors @: _1~_1R< 951112(:;&;)3))
= 1 cos(ng)isin((n+l)g)
n+1 2 sin(%) ’

P.3.2. Pour tout n € N,
|sin((n + 1) g)|
[sin(§)|

Tl = —— leos(nd)|

< 1 1
S+ 1 sin(9)]

| donc (7},) tend vers 0.

P.3.3. Pour § = § et p € N, t3, = cos(pm) = (—1)*.
Ainsi, la suite (f3p)pen diverge. Autrement dit, la
suite (t,) admet une suite extraite qui diverge,

| donc (t,,) diverge.

P.3.4. Il s’ensuit que la réciproque du théoréme de
la question P.2 est fausse.

1.1. La suite (na,) est bornée car elle converge :
| 3K > 0,Vn € N*, [na,| < K.

L’hypotheése (i) signifie que an =o(L), et I'on vient
d’en déduire que a, = O(2).

1.2. Soit z € [0,1]. On a

lan 2" = |ap|z™ < nlja,|z™ < Kz™.

Or la série Y z™ converge, comme série géométrique
de raison x € [0, 1]. Alors, par comparaison des séries
a termes positifs, la série > _|a, ™| converge, donc

pour z € [0,1], la série > a, a"
absolument.

converge
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1.3. Soient n € N et z € [0, 1[. Selon un principe clas-
sique, on introduit dans u,, des termes intermédiaires,
ici 3720 apa et S, ap

+oo +oo

lﬂ: L— Zakaﬁk —I—Zakxk
k=0 k=0
n n n
— Zakxk + Zakxk — Zak

Z ag T —&—Zak

k=n-+1

1.4.1. Soit n € N. La suite (kax)r>0 est bornée, donc
aussi la suite (kay)g>n. Alors la borne supérieure

| M,, = supy,,(|kay|) existe.

1.4.2. Soit € > 0.

La suite (kag)r>o converge vers 0 donc il existe
N € N tel que pour tout k > N, |kai| < e.

Soit n > N. Pour tout £ > n, k > N donc
|k ar] < e. Alors € est un majorant de la suite
(Ik ak|)k>n, donc M, < e, car M, est le plus petit
des majorants de cette suite.

On vient de prouver que
Ve >0, AN eN,VneN, n> N —= M, < ¢,

c’est-a-dire que | (M,,) converge vers 0.

1.5. Soient n € Net z € [0,1[. On a

L= f(@)|+ Y ar(a -
k=0

“+o0
[t | Z ap z*

k=n-+1

D’une part,

S an (et - | <Y lan(at 1)) = Y Jael (1-2*)
k=0 k=0 k=0

Onal—2%=0et pour k € [1,n], comme = < 1,

k—1 k—1
l—mk:(l—w)zgcjg(l—x Zl (1-—x)k
3=0 §=0
1) ko).
k=0

n
Alors, > x| (1 — 2*) <
k=0
D’autre part,

+oo +o0 +o0o .Tk
S w3 ket = 3 Kl
k=n+41 k=n-+1 k=n-+1

Mais pour tout k > n+1, k > n donc klag| < M, et

1 1
<o Alors

+oo
>

k=n-+1

J? +oo
E l‘k.

k=n+1

ZM

k=n-+1

n

Or, en reconnaissant une somme géométrique de rai-
son z et de premier terme z"*1!,

Zm

k=n+1

n+1

2

4

Ainsi, comme x < 1,

= M, ot M,
Z ak T <—1 S
W n l—z " n(l-2x)
Finalement,
M,
ual < 1~ f |+Z\ak|1—x e
M,
< |L— 1-— k _
L~ f(@)]+ I),;) ol + s

1.6. Pourx =1 — %, cette majoration devient

1 1 n
] < ‘L—f(l— n)‘ Dbl M

D’apres (ii), lim f(z) = L donc
Tz—1—
1
1 1—-—| =1L
i s(10)
) 1
et lim L—f(l—)’ =0.
n—-+oo n

D’apres P.1.2, comme la suite (k|ax|) tend vers 0,

*ZM k| =

k=0

Enfin, d’apres 1.4.2, la suite (M,,) tend vers 0.
Ainsi, on a majoré |u,| par le terme général d’une
suite qui tend vers 0, donc | (uy,) tend vers 0.

n+1

Zk\ak\—>0

n—i—lk ‘

1.7. Dire que (uy,) tend vers O signifie que la suite
(> r—o ax) converge vers L, ce qui par définition, si-
gnifie que la série > a,, converge et a pour somme L.
Autrement dit, on peut remplacer x par 1 dans la
définition de f : f est prolongeable en 1. En vertu
de la propriété (ii), la fonction ainsi prolongée est
continue en 1.

Finalement, f se prolonge par continuité en 1 en

posant f(1) = > ¢, = L.

2.1. Pour appliquer la théorie du cours, il est néces-
saire que les fonctions z — 422, z — 4z, z — —1
et x — x/(1 — x) soient continues sur U'intervalle de
résolution, lequel ne peut donc pas contenir 1. En
outre, dans le cadre du théoréme de Cauchy-Lipschitz,
la fonction z — 4z2 ne doit pas s’annuler, donc I’in-
tervalle de résolution ne peut contenir 0.

Ainsi, on peut résoudre (F) sur tout intervalle ne
contenant ni 0, ni 1.

Commentaire. Cela dit, en sortant du cadre du théo-
reme de Cauchy-Lipschitz, il est permis de chercher
les solutions de (FE) développables en série entiére
autour de 0, donc sur un intervalle centré en 0, mais
qui ne pourrait toujours pas contenir 1.
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2.2. D’apres le cours,
l’ensemble des solutions de (E) sur I =]0,1] est
un plan affine, dirigé par le plan vectoriel des
solutions de I’équation homogene associée.

2.3. D’apres le cours, les séries géométriques > a™ et
S (—1)"z™ convergent si et seulement si |z| < 1, et
Pon a, pour tout x € |—1,1],

1 =
e

2.4. Raisonnons par analyse-synthese.

Analyse. Supposons que (F) admette une solution
développable en série entiere y(z) = : 0 anx™, de
rayon de convergence R > 0. Sur |—R, R[, y est de

classe €°° et pour tout = € |-R, R|,

“+oo
"(z) = g na,z" !

n=1

—+o0
et y'(2)

n=2

Par ailleurs, pour tout = € |—1,1],

Alors, en posant » = min{1, R}, pour tout = € |—r, 7|,

4a?y" (x) + 4oy (2) - -

+oo +oo
42° Z n(n—1)a,z" 2+ 4z Z na, "t
n=2 n=1
+oo 400
— Z anpr" = Z "
n=0 n=1
+oo —+oo
4Zn(n— a,a" +4Znanx”
n=2 n=1
+oo —+oo
- Z apx” = Z z"
n=0 n=1
—+o0 —+oo
Z4n(n —Daya" + Z4nan:c"
n=1 n=1
+oo +o0
—Zana:" —ag = Zx”
n=1 n=1

y(z) = lf

+oo +oo
— Z(4n2 —Dapz"™ —ag = Zm"
n=1 n=1

Par unicité du développement en série entiere de la

fonction = — x/(1 — ), ap = 0 et pour tout n € N*,

(4n? —1)a, = 1 ou encore
1
4n? —1°

Synthese. Considérons la série entiere

D

n>1

Ap =

xTL

4n2 —1°

= Zn(nfl)anmnfz.

3

4

Comme son coefficient général est une fraction ra-
tionnelle en n, le rayon de convergence de cette série
entiére est le méme que celui de la série entiere > a™,
c’est-a-dire 1. Il n’est pas nul et la synthese est validée.
Ainsi, I’équation (£) admet une unique solution
développable en série entiere, la fonction

+o0 n

x
n=1

Son rayon de convergence est 1.

2.5.1. Sans difficulté, pour tout n > 1,
1 1
4n2 -1 2(2n—-1) 2@2n+1)

2.5.2. La fonction h est somme d’une série entiére
dont le rayon de convergence est clairement 1. Alors,
elle est de classe €' sur I et pour tout u € I,

=3 1 1/ 1 1
= Z u27l = = — —_— + .
= 1—w?2 2\1—-u 1+4+u
Puisque h(0) = 0, pour tout u € I,
h(u)

1 1 1
S(= (1 —w) + (1 + ) = ilnli_z.

2.5.3. Soit x € I. Comme x > 0, on peut poser
u = /7, c’est-a-dire z = u?. On a

+oo

S iy
l— 2n+1 2n+1 U
1. 14w 1 1+
= —1In = In .
2u  1—u 2y 1—/=x
2.5.4. Soit z € I. On a
1+O° T 1+ "
‘P(z)zinz 1 522n+1
D’une part,
+oo n "
S =S = e -

2n+1 n+1

D’autre part, en translatant l'indice,

2.5.5. Soit = € I. On peut écrire
r—1

= In(1

2—1—4\/5 n(l+x)

1++x

4\/x

p(r) =

+ (1= Va)In(1l - V).
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Or, en posant y = 1 — /=,

lim (1 —+z)In(1 - +vx)

= lim ylny =0.
r—1— y—0+

|D0nc lim, - ¢(z) =3 = L.

2.6.1. Clairement, la suite (na,) tend vers 0 donc
(a,) vérifie (i). D’apres la question précédente, la
suite (a,) vérifie aussi (ii).

2.6.2. D’apres la question 1.7, > a,, converge et a
y +o0o _ 1
pour somme » "~ a, = L = 3.

Alors S =Y a, =-1+1

N

2.7. Soit n > 1. D’apres la question 2.5.1,

1 (= 1 "1
@:2<22k—1_22k+1

k=1

)

1<n—1 1 n 1 )
2 k:02k+1 k:12k+1
1
o),
2 2n+1

Ou l'on voit clairement que (S,,) converge vers %,

1
donc ), -, a, converge et a pour somme 3.

| On retrouve S = —%.

3.1. | Non. En effet, en nous inspirant de la ques-
tion P.3.3, considérons la suite (c,) définie par

4

4

¢n = (—1)™. La série Y (—1)™ diverge grossiérement.
Pourtant, pour tout z € |—1,1],

= 1 1

n=0

h(zx)

e
1+2 21—

et la suite (¢,) vérifie les hypothéses requises.

3.2. Comme les ¢, sont positifs, pour z € [0, 1],

n

+oo
et < g cpx® = h(z).
k=0 k=0

En passant a la limite quand x tend vers 1,

Ainsi, les sommes partielles de la série a termes posi-

tifs > ¢k sont majorées, donc | > ¢, converge.

Soit S sa somme. On a S < H car H majore les
sommes partielles de Y ¢,. En outre, comme z < 1,

+oo “+oo
h(z) = chxk < ch =S5
k=0 k=0

En passant toujours a la limite sur x, H < S. Ainsi,

+oo
lim h(z) = g Cn.-
z—1

<l n=0

3.3. D’apres la partie 1, il suffit de rajouter I'hypo-
these (i), a savoir que la suite (nc,) tend vers 0.



