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Corrigé du dix-septième devoir à la maison
Notations. Posons A = [0, +→[ et A

→ = ]0, +→[.

P.1. D(ω) = ]1, +→[.

P.2. D(ε ) = ]0, +→[ = A
→.

P.3. Cette intégration par parties est licite :

ε (ϑ) =
[
↑e

↑x
x

ω↑1]
A

+ (ϑ ↑ 1)
∫

A→
e

↑x
x

ω↑2 dx.

En e!et, si ϑ > 1, ε (ϑ) a un sens ; ϑ ↑ 1 > 0 et
lim
x↓0

e
↑x

x
ω↑1 = 0, lim

x↓+↔
e

↑x
x

ω↑1 = 0,

donc le crochet a aussi un sens. Ainsi,
pour ϑ ↓ ]1, +→[, ε (ϑ) = (ϑ ↑ 1)ε (ϑ ↑ 1).

P.4. Par une récurrence immédiate, si n ↭ 2,
ε (n) = (n ↑ 1)!ε (1). Or ε (1) =

∫ ↑t
A→ dt = 1 = 0!

Pour n ↓ N↗, ε (n) = (n ↑ 1)!

1.1. ϖω est clairement continue sur A
→ donc elle est

continue par morceaux sur A si et seulement si elle a
une limite finie en 0+. Or ϖω(x) ↔x↓0+ x

ω↑2, donc
ϱ(ϖ) = [2, +→[.

1.2. Pour ϑ ↓ ϱ(ϖ), ϖω est continue par morceaux
sur A. En outre, ϖω(x) ↔x↓+↔ x

ω↑1
e

↑x. Comme
ϑ ↓ ϱ(ϖ) ↗ D(ε ), x ↘≃ x

ω↑1
e

↑x est intégrable
sur A.

ϖω est intégrable sur A pour tout ϑ ↓ ϱ(ϖ).

1.3.1. Pour n ↓ N↗, un(0) = 0, donc
∑

un(0)
converge et sa somme est 0 = ϖω(0). Si x > 0,∑

un(x) converge comme série géométrique de raison
e

↑x
< 1 et

+↔∑

n=1
x

ω↑1
e

↑nx = x
ω↑1

e
↑x

1 ↑ e↑x
= ϖω(x).

∑
un converge simplement sur A et

+↔∑

n=1
un = ϖω.

1.3.2. Pour n ↭ 1, 0 ↫ un(x) ↫ x
ω↑1

e
↑x et

d’après 1.2, x ↘≃ x
ω↑1

e
↑x est intégrable sur A.

un est intégrable sur A pour tout n ↓ N↗.

1.3.3. En posant u = nx, qui est un changement de
variable bijectif et C 1 de A dans A,

∫

A
un =

∫

A
x

ω↑1
e

↑nx dx

=
∫

A

u
ω↑1

nω↑1 e
↑u du

n
= ε (ϑ)

nω
.

1.3.4. Les un sont continues et intégrables sur A ;∑
un converge simplement sur A ;

∑+↔
n=1 un = ϖω

est continue par morceaux sur A ; comme ϑ > 1,∑
1/n

ω converge donc
∑ ∫

A|un| converge. Alors, ϖω

est intégrable sur A (ce que l’on savait déjà) et
∫

A

+↔∑

n=1
un =

+↔∑

n=1

∫

A
un.

1.3.5. Alors,

I(ϑ) =
∫

A
ϖω =

∫

A

+↔∑

n=1
un =

+↔∑

n=1

∫

A
un

=
+↔∑

n=1

ε (ϑ)
nω

= ε (ϑ)ω(ϑ).

1.3.6. La série définissant la fonction ω converge
normalement donc uniformément sur [2, +→[ car
supω↘[2,+↔[ 1/n

ω = 1/n
2. Ainsi, d’après le théorème

de la double limite,
limω↓+↔ ω(ϑ) = 1.

1.3.7. Alors I(k) ↔k↓+↔ ε (k) = (k ↑ 1)!

2.a.1. La fonction h est clairement continue sur
R↗ ⇐ R comme quotient de fonctions qui le sont. Il
reste à montrer la continuité en tout couple (0, t0) où
t0 ↓ R.

Pour x ⇒= 0 et t ⇒= 0, on a

h(x, t) = t
x

ex ↑ 1
sin(xt)

xt
.

Pour u ⇒= 0, posons

h1(u) = u

eu ↑ 1 et h2(u) = sin u

u

et h1(0) = h2(0) = 1, de sorte que
⇑(x, t) ↓ R2

, h(x, t) = th1(x)h2(xt).
Quand u ≃ 0, h1(u) ↔ 1 et h2(u) ↔ 1. Or quand
(x, t) ≃ (0, t0), x ≃ 0 et t est borné, donc x t ≃ 0.
Alors

lim
(x,t)↓(0,t0)

h(x, t) = t0 = h(0, t0)

et h est continue en (0, t0).
Ainsi, h est continue sur R2.

2.a.2. Soit t ↓ R. Comme h est continue sur R2,
x ↘≃ h(x, t) est continue sur R. De plus

|h(x, t)| ↫ 1
ex ↑ 1 ↔

x↓+↔
e

↑x
.

Or x ↘≃ e
↑x est intégrable sur [1, +→[, donc

x ↘≃ h(x, t) aussi.
Pour tout t ↓ R, x ↘≃ h(x, t) est intégrable sur A.
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2.a.3. On a vu que h est continue sur R2 et que
x ↘≃ h(x, t) est intégrable sur A pour tout t. Cela
entraine dans un premier temps que H est bien défi-
nie sur R. Pour prouver la continuité de H, il reste à
dominer h(x, t) par une fonction de x indépendante
de t et intégrable sur A.

Pour x ⇒= 0, |h(x, t)| ↫ x |t|
ex ↑ 1 .

Soit un segment [a, b] ↗ R. Pour t ↓ [a, b],

|h(x, t)| ↫ x max(|a|, |b|)
ex ↑ 1 .

La fonction x ↘≃ x/(ex ↑ 1) est intégrable sur A car
elle est prolongeable par continuité en 0 et

x

ex ↑ 1 ⇓
x↓+↔

e
↑x/2

.

Alors, H est continue sur tout segment [a, b] ↗ R
donc H est continue sur R.

2.a.4. L’application t ↘≃ h(x, t) est clairement de
classe C ↔ sur R car la fonction sinus l’est.

On sait que pour n ↓ N et u ↓ R,
sin(n)(u) = sin(u + n

ε
2 ),

ce que l’on peut vérifier par une récurrence immédiate,
donc pour t ↓ R et x ⇒= 0,

ς
n
h

ςtn
(x, t) =

x
n sin(xt + n

ε
2 )

ex ↑ 1 .

Ces dérivées partielles sont clairement continues par
rapport à t sur R, et par rapport à x sur A en pro-
longeant par

ςh

ςt
(0, t) = 1 et ς

n
h

ςtn
(0, t) = 0 si n ↭ 2.

Il reste à dominer ces dérivées. Pour n ↭ 1 et x ⇒= 0,
∣∣∣∣
ς

n
h

ςtn
(x, t)

∣∣∣∣ ↫
x

n

ex ↑ 1 .

Or x ↘≃ x
n
/(ex ↑ 1) est prolongeable par continuité

en 0 et négligeable devant e
↑x/2 en +→. Donc elle

est intégrable sur A
→.

Ainsi, H est de classe C ↔ sur R et pour tout
n ↭ 0 et tout t ↓ R,

H
(n)(t) =

∫

A

x
n sin(xt + n

ε
2 )

ex ↑ 1 dx.

2.b.1. Si ϑ = 0, gn(x) = 0 pour tout x ↓ R, donc la
série converge et D(g) = R.

Soit ϑ ⇒= 0. On a gn(0) = 0 donc
∑

gn(0) converge.
Si x > 0, |gn(x)| ↫ e

↑nx. Comme e
↑x

< 1, la
série géométrique

∑
e

↑nx converge, donc
∑

gn(x)
converge absolument. Si x < 0, e

↑nx tend vers +→ :
si sin(ϑx) = 0, c’est-à-dire si x = k

ε
ω avec k ↓ Z,

gn(x) = 0 et la série converge ; sinon, la série diverge
grossièrement car son terme général ne tend pas vers 0.
Alors D(g) = A ⇔ ε

ω Z.

Finalement, D(g) =
{
R si ϑ = 0,

A ⇔ ε
ω Z sinon.

2.b.2. Si ϑ = 0, g(x) = 0 = h(x, 0). Si ϑ ⇒= 0 et
x > 0,

g(x) = sin(ϑx)
+↔∑

n=1
e

↑nx

= sin(ϑx) e
↑x

1 ↑ e↑x
= h(x, ϑ).

De plus, si x ↓ ε
ω Z, g(x) = 0 = h(x, ϑ).

Pour ϑ ↓ R et x ↓ D(g), g(x) = h(x, ϑ).

2.b.3. Pour ϑ ↓ R, n ↭ 1 et x ↭ 0, |gn(x)| ↫ e
↑x.

Or x ↘≃ e
↑x est intégrable sur A, donc

gn est intégrable sur A pour ϑ ↓ R et n ↓ N↗.

2.b.4. Les fonctions gn sont continues et intégrables
sur A ;

∑
gn converge simplement sur A et sa somme

x ↘≃ h(x, ϑ) est continue sur A. Étudions
∑ ∫

A|gn|.
On a |gn(x)| ↫ |ϑ|xe

↑nx, donc
∫

A
|gn| ↫ |ϑ|

∫

A
xe

↑nx dx = |ϑ|
n2

et
∑

1/n
2 converge. Donc, g est intégrable sur A (ce

que l’on savait déjà) et
∫

A g =
∑+↔

n=1
∫

A gn. Comme
g(x) = h(x, ϑ), on en tire que

pour ϑ ↓ R, H(ϑ) =
+↔∑

n=1

∫

A
gn.

2.b.5. On a
∫

A
gn = Im

(∫ ↑nx

A→
e

iωx dx

)
= ϑ

n2 + ϑ2

donc pour ϑ ↓ R, H(ϑ) =
+↔∑

n=1

ϑ

n2 + ϑ2 .

3.1. Si t = 0, φt = 0, donc elle est intégrable sur A.
Si t ⇒= 0, φt(x) ↔x↓0 t donc φt est continue par
morceaux sur A. Si t > 0,

φt(x) ↔
x↓+↔

e
tx

2ex
= 1

2 e
(t↑1)x

.

Or x ↘≃ e
(t↑1)x est intégrable sur A si et seulement

si t ↑ 1 < 0, soit t < 1. D’autre part, si t < 0, la
fonction sh étant impaire, φt est intégrable sur A si
et seulement si t > ↑1.

Finalement, I (φ) = ]↑1, 1[.

3.2.1. D’après 1.3.6, quand n augmente,
∣∣(↑1)n

ω(2n + 2) t
2n+1∣∣ ↔ |t|2n+1

.

Comme |t| < 1, la série géométrique
∑

|t|2n+1

converge, donc
pour tout t ↓ I (φ),

∑
(↑1)n

ω(2 n + 2) t
2n+1

converge.
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3.2.2. Soient t ↓ ]↑1, 1[ et x ⇒= 0 :

h(x, t) = sin(xt)
ex ↑ 1 =

+↔∑

n=0

(↑1)n (xt)2n+1

(2n + 1)!(ex ↑ 1)

=
+↔∑

n=0

(↑1)n
t
2n+1

(2n + 1)! ϖ2n+2(x) =
+↔∑

n=0
hn(x)

où l’on a posé h0(0) = t, h0(x) = tϖ2(x) si x ⇒= 0 et
pour n ↭ 1 et x réel,

hn(x) = (↑1)n
t
2n+1

(2n + 1)! ϖ2n+2(x).

Comme n ↭ 0, 2 n + 2 ↓ ϱ(ϖ) donc d’après 1.1
et 1.2, les ϖ2n+2 sont continues par morceaux et in-
tégrables sur A, donc les hn aussi. D’autre part, on
vient de voir que

∑
hn converge simplement sur A

et a pour somme x ↘≃ h(x, t) qui est continue sur A.
Alors, il reste à prouver que

∑ ∫
A|hn| converge.

D’après 1.3.5, P.4 et 1.3.6,
∫

A
|hn| =

∫ +↔

0

|t|2n+1

(2n + 1)!ϖ2n+2(x)dx

= |t|2n+1

(2n + 1)!

∫ +↔

0
ϖ2n+2(x)dx

= |t|2n+1

(2n + 1)! ε (2n + 2)ω(2n + 2)

= ω(2n + 2) |t|2n+1 ↔
n↓+↔

|t|2n+1
.

Comme |t| < 1,
∑ ∫

A|hn| converge.
Ainsi, la permutation suivante est possible :

H(t) =
∫

A
x ↘≃ h(x, t) =

∫

A

+↔∑

n=0
hn =

+↔∑

n=0

∫

A
hn.

D’après le calcul précédent,
pour tout t ↓ I (φ),

H(t) =
+↔∑

n=0
(↑1)n

ω(2n + 2) t
2n+1.

3.3. On vient de voir que la série entière converge
absolument pour |t| < 1. Pour t = 1, elle diverge
grossièrement, donc

le rayon de convergence cherché est 1.

3.4.1. Pour x ↓ ]↑↼, ↼[,

H

(
x

↼

)
=

+↔∑

n=0
(↑1)n

ω(2n + 2) x
2n+1

↼2n+1

= ↼

+↔∑

n=0
a2n+1 x

2n+1
.

D’autre part, pour x ⇒= 0,

H

(
x

↼

)
= ↼

2
ch x

sh x
↑ ↼

2x
,

donc

sh xH

(
x

↼

)
= ↼

2 ch x ↑ ↼

2
sh x

x

= ↼

2

+↔∑

n=0

x
2n

(2n)! ↑ ↼

2

+↔∑

n=0

x
2n

(2n + 1)!

= ↼

+↔∑

n=0

nx
2n

(2n + 1)! .

Pour x = 0, on a encore

sh xH

(
x

↼

)
= ↼

+↔∑

n=0

n

(2n + 1)! x
2n

.

Finalement, pour tout x ↓ ]↑↼, ↼[,

sh x

+↔∑

n=0
a2n+1 x

2n+1 =
+↔∑

n=0

n

(2n + 1)! x
2n

.

3.4.2. Nous allons e!ectuer le produit de Cauchy
dans le membre de gauche :

sh x

+↔∑

k=0
a2k+1 x

2k+1

=
(+↔∑

k=0

x
2k+1

(2k + 1)!

) (+↔∑

k=0
a2k+1 x

2k+1

)

=
+↔∑

k=0

(
k∑

p=0

x
2(k↑p)+1

(2(k ↑ p) + 1)!a2p+1 x
2p+1

)

=
+↔∑

k=0

(
k∑

p=0

a2p+1
(2(k ↑ p) + 1)!

)
x

2k+2
.

En identifiant ce développement en série entière avec
celui de la question précédente, on a

pour tout k ↓ N,
k∑

p=0

a2p+1
(2(k ↑ p) + 1)! = k + 1

(2k + 3)! .

Pour k ↭ 1,

a2k+1 = k + 1
(2k + 3)! ↑

k↑1∑

p=0

a2p+1
(2(k ↑ p) + 1)! ,

donc si a2p+1 ↓ Q pour p ↫ k ↑ 1, a2k+1 ↓ Q.
Comme a1 = 1/6 ↓ Q, cela prouve par récurrence
que pour tout k ↓ N, a2k+1 ↓ Q.

3.4.3. En utilisant la formule de récurrence ci-dessus,
on trouve a3 = ↑1/90, puis

a5 = 1
945 et ω(6) = ↼

6

945 .
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