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Corrigé du dix-neuvième devoir à la maison

Commentaire. Selon la demande claire de l’énoncé, le
corrigé citera explicitement les théorèmes utilisés.

I.A.1. Soient s > 0 et n ∈ N∗. Introduisons φ : t 7→ 1/ts
et Φ une primitive de φ sur ]1,+∞]. Alors

un(s) = φ(n) −
∫ n+1

n

φ(t)dt

= Φ′(n) − (Φ(n+ 1) − Φ(n)).

Sur le segment [n, n + 1], φ décroit strictement donc
φ ⩽ φ(n),

∫ n+1
n

φ(t)dt < φ(n) et un(s) > 0.
De plus, d’après l’inégalité de Taylor-Lagrange,

|Φ(n+ 1) − Φ(n) − Φ′(n)| ⩽ ∥Φ′′∥[n,n+1]
∞

= ∥φ′∥[n,n+1]
∞ = s

ns+1 .

Finalement, 0 < un(s) ⩽ s

ns+1 .

I.A.2. Or s+ 1 > 1 car s > 0 donc
∑

1/ns+1 converge
et

∑
un converge simplement sur ]0,+∞[.

De plus, sur tout segment [a, b] ⊂ R∗
+,

0 ⩽ un(s) ⩽ b/na+1 où
∑

1/na+1 converge, alors∑
un converge normalement donc uniformément sur

tout segment de R∗
+ et U est continue sur R∗

+.

I.A.3. Soit s ∈ R∗
+ ∖ {1}. On a

N∑
n=1

un(s) =
N∑

n=1

1
ns

−
N∑

n=1

∫ n+1

n

dt
ts

= HN (s) −
∫ N

1

dt
ts

−
∫ N+1

N

dt
ts

= HN (s) − (N1−s − 1)
1 − s

−
∫ N+1

N

dt
ts
.

Or
∫ N+1

N

dt
ts

⩽
1
Ns

−−−−−→
N→+∞

0, donc

lim
N→+∞

(
HN (s) − N1−s

1 − s

)
= ζ(s) = U(s) + 1

s− 1 .

I.A.4. De même,
N∑

n=1
un(1) = HN (1) −

∫ N+1

1

dt
t

= HN (1) − ln(N + 1),

donc

HN (1) − lnN =
N∑

n=1
un(1) + ln

(
1 + 1

N

)
−−−−−→
N→+∞

U(1).

Comme un(1) > 0, U(1) > 0 donc
lim

N→+∞
(HN (1) − lnN) = γ = U(1) > 0.

I.B.1. Posons fn : s 7→ (−1)n−1/ns. Si
◦ (i) les fn sont de classe C 1 sur ]0,+∞[ ;
◦ (ii) la série de fonctions converge simplement
sur ]0,+∞[ ;
◦ (iii) la série de fonctions

∑
f ′

n converge uniformément
sur tout segment de ]0,+∞[ ;

alors
• la somme f =

∑+∞
n=1 fn est de classe C 1 sur ]0,+∞[ ;

• f ′ =
∑+∞

n=1 f
′
n.

Vérifions donc les hypothèses.
(i) C’est évident et f ′

n(s) = (−1)n lnn/ns.
(ii) Pour s > 0, la suite numérique (|fn(s)|) tend vers 0
en décroissant donc la série numérique

∑
fn(s) converge

grâce au critère spécial des séries alternées.
(iii) Pour s > 0, la suite numérique (|f ′

n(s)|) tend vers 0,
mais elle ne décroit qu’à partir du rang n(s) = ⌊e1/s⌋+1 :
le critère spécial des séries alternées s’applique donc à
la série

∑
n⩾n(s) f

′
n(s) qui converge. Il s’ensuit que la

série
∑
f ′

n(s) converge et que la série de fonctions
∑
f ′

n

converge simplement sur ]0,+∞[.
Pour la convergence uniforme, on veut majorer le

reste, mais on ne sait le faire qu’à partir du rang n(s),
donc pas uniformément. On se place alors sur [a,+∞[
avec a > 0. Pour s ∈ [a,+∞[, la suite (|f ′

n(s)|)n⩾n(a)
décroit et pour n ⩾ n(a),∣∣∣∣∣

+∞∑
k=n+1

f ′
k(s)

∣∣∣∣∣ ⩽ |f ′
n+1(s)| ⩽ lnn

na
.

On en déduit que la série de fonctions
∑

n⩾n(a) f
′
n

converge uniformément sur [a,+∞[ donc il en est de
même pour la série de fonctions

∑
f ′

n.

I.B.2. On a
S2N (s)

=
2N∑
n=1

(−1)n−1

ns
=

N−1∑
p=0

1
(2p+ 1)s

−
N∑

p=1

1
(2p)s

=
N−1∑
p=0

1
(2p+ 1)s

+
N∑

p=1

1
(2p)s

− 2
N∑

p=1

1
(2p)s

=
2N∑
n=1

1
ns

− 2
2s

N∑
n=1

1
ns

= H2N (s) − 1
2s−1 HN (s)

= H2N (s) − (2N)1−s

1 − s
− 1

2s−1

(
HN (s) − N1−s

1 − s

)
.

D’après I.B.1 et I.A.3, en passant à la limite sur N ,
f(s) = (1 − 21−s)ζ(s).

I.B.3. Du calcul précédent, on tire
S2N (s)

=
N−1∑
p=0

1
(2p+ 1)s

− 1
2s

N∑
p=1

1
ps

= KN (s) − 1
2s
HN (s)

= KN (s) − N1−s

2s (1 − s) − 1
2s

(
HN (s) − N1−s

1 − s

)
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et

KN (s) − N1−s

2s (1 − s)

= S2N (s) + 1
2s

(
HN (s) − N1−s

1 − s

)
−−−−−→
N→+∞

f(s) + 2−s ζ(s) = (1 − 21−s + 2−s)ζ(s),

donc

lim
N→+∞

(
KN (s) − N1−s

2s (1 − s)

)
= (1 − 2−s)ζ(s).

I.C. On a |f(s) − SN (s)| ⩽ |fN+1(s)| car
∑
fn(s) est

alternée, donc si l’on prend SN (s) comme valeur appro-
chée de f(s), pour que l’erreur commise soit inférieure
à ε, il suffit de prendre |fN+1(s)| = (N + 1)−s ⩽ ε,
c’est-à-dire N ⩾ ε−1/s − 1. En prenant ε = 10−1 et
s = 1

2 , on a N ⩾ 99 : il suffit de calculer S99( 1
2 ), et

l’on trouve f( 1
2 ) = 0,6 à 10−1 près (par excès, puisque

S99(s) ⩾ f(s)). Alors, ζ( 1
2 ) = f( 1

2 )/(1 − 21/2) = −1,5
(par défaut à 10−1 près, à cause du changement de signe).

I.D. Soit a > 0. Pour s ∈ [a,+∞[,

|f(s) − SN (s)| ⩽ 1
(N + 1)s

⩽
1

(N + 1)a

donc
∑
fn converge uniformément sur [a,+∞[. De plus,

f1 = 1 et si n ⩾ 2, lims→+∞ fn(s) = 0. Alors, la série
de ces limites converge (ce qui n’est vraiment pas une
surprise) et l’on peut permuter :

lim
s→+∞

f(s) = 1.

I.E.1. D’après les questions précédentes, U est continue
en 1 donc au voisinage de 1, U(s) = U(1) + o(1), et

comme U(1) = γ et ζ(s) = U(s) + 1
s− 1 ,

au voisinage de 1, ζ(s) = 1
s− 1 + γ + o(1).

I.E.2. D’une part,

f ′(1) =
+∞∑
n=1

f ′
n(1) =

+∞∑
n=1

(−1)n lnn
n
.

D’autre part, f(s) = (1 − 21−s) ζ(s). Quand s est au
voisinage de 1, en posant s = 1 + h,

1 − 21−s = 1 − e−h ln 2 = h ln 2 − 1
2 ln2 2h2 + o(h2),

donc

f(s) = (h ln 2 − 1
2 ln2 2h2 + o(h2))( 1

h + γ + o(1))
= ln 2 + (γ ln 2 − 1

2 ln2 2)h+ o(h).

Par unicité du développement limité de f en 1 à l’ordre 1,
f ′(1) = γ ln 2 − 1

2 ln2 2.

Finalement,
+∞∑
n=1

(−1)n lnn
n

=
(
γ − ln 2

2

)
ln 2.

II.A. D’abord, α : t 7→ ts−1/(et + x) est conti-
nue sur ]0,+∞[. Quand t est au voisinage de +∞,
α(t) ≪ 1/t2 et t 7→ 1/t2 est intégrable sur ]1,+∞].
Quand t est au voisinage de 0, α(t) ∼ 1/[(x+ 1)t1−s] et
t 7→ 1/t1−s est intégrable sur ]0, 1] car 1 − s < 1.

t 7→ ts−1

et + x
est bien intégrable sur ]0,+∞[.

II.B.1. Voici un calcul formel, que l’on justifiera ensuite.
Pour clarifier les justifications, on a numéroté les égalités
qui posent problème.∫ +∞

0

ts−1

et + x
dt =

∫ +∞

0

ts−1 e−t

1 + xe−t
dt

=
∫ +∞

0
ts−1 e−t

+∞∑
n=0

(−1)nxn e−nt dt(1)

=
+∞∑
n=0

(−1)nxn

∫ +∞

0
ts−1 e−(n+1)t dt(2)

=
+∞∑
n=0

(−1)nxn

∫ +∞

0

(
u

n+ 1

)s−1
e−u du

n+ 1(3)

=
+∞∑
n=0

(−1)nxn

(n+ 1)s
Γ (s)

et l’on a bien l’égalité demandée.
Justifions le calcul :

(1) Comme |x| < 1 et t ⩾ 0, | − xe−t| < 1 donc
+∞∑
n=0

(−xe−t)n = 1
1 − (−xe−t) .

(3) On a posé u = (n+ 1)t : il s’agit bien d’une bijection
de classe C 1 de R+ dans lui-même, donc

t 7→ ts−1 e−(n+1)t et u 7→
(

u

n+ 1

)s−1
e−u 1

n+ 1

sont simultanément intégrable sur ]0,+∞[.
(2) Posons gn : t 7→ (−1)nxn ts−1 e−(n+1)t. Si
◦ (i) les gn sont continues par morceaux et intégrables
sur ]0,+∞[ ;
◦ (ii) la série

∑
gn converge simplement sur ]0,+∞[ ;

◦ (iii) la somme g =
∑+∞

0 gn est continue par mor-
ceaux sur ]0,+∞[ ;
◦ (iv) la série

∑ ∫ +∞
0 |gn| converge,

alors
• g est intégrable sur ]0,+∞[ ;
•

∫ +∞
0 g =

∑+∞
0

∫ +∞
0 gn, ce qui est la justification

attendue.
Il reste à vérifier les hypothèses.

(i) Les gn sont évidemment continues sur ]0,+∞[. Quand
t → 0, |gn(t)| ⩽ |x|n/t1−s et t 7→ 1/t1−s est intégrable
sur ]0, 1] car 1 − s < 1. Quand t → +∞, |gn(t)| ≪ 1/t2.
Donc gn est intégrable sur ]0,+∞[.
(ii) Pour t ⩾ 0, la série

∑
gn(t) est une série géométrique

de raison | − xe−t| ∈ [0, 1[ donc elle converge.
Commentaire. C’est en fait la justification (1) ci-dessus.
(iii) La somme est g : t 7→ ts−1 e−t/(1 + xet) qui évi-
demment continue sur ]0,+∞[.
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(iv) Avec le changement de variable de la justification (3),
In =

∫ +∞
0 |gn| = |x|nΓ (s)/(n+ 1)s. On utilise la règle

de D’Alembert : In+1/In = |x| (1 + 1/n)−s tend vers
|x| < 1 quand n → +∞ et

∑ ∫ +∞
0 |gn| converge.

II.B.2. Pour obtenir l’égalité voulue, il « suffit » de
faire tendre x vers 1 dans les deux membres. Là encore,
il reste à justifier que c’est possible.

Premier membre. Par caractérisation séquentielle, il
suffit de prouver que pour toute suite (xn) de ]−1, 1[
tendant vers 1,

lim
n→+∞

∫ +∞

0

ts−1

et + xn
dt =

∫ +∞

0

ts−1

et + 1 dt.

Soit une telle suite. Posons hn : t 7→ ts−1/(et + xn) et
utilisons le théorème de convergence dominée : si
◦ (i) les hn sont continues par morceaux sur ]0,+∞[ ;
◦ (ii) la suite de fonctions (hn) converge simplement
sur ]0,+∞[ vers une certaine fonction h ;
◦ (iii) h est continue par morceaux sur ]0,+∞[ ;
◦ (iv) il existe une fonction φ continue, positive et inté-
grable sur ]0,+∞[ telle que pour tout n ∈ N, |hn| ⩽ φ,

alors
• les hn et h sont intégrables sur ]0,+∞[ ;
• limn→+∞

∫ +∞
0 hn =

∫ +∞
0 h, ce qui est exactement ce

que l’on voulait.
Vérifions les hypothèses :

(i), (ii) & (iii) Évident et h : t 7→ ts−1/(et + 1).
(iv) D’après II.A, h est intégrable sur ]0,+∞[ (les
hn aussi). Comme |xn| < 1, pour t ⩾ 0 et n ∈ N,
0 ⩽ hn(t) ⩽ h(t) et c’est la domination voulue.

Second membre. Notons kn : x 7→ (−1)nxn/(n+ 1)s.
Les kn sont continues sur [0, 1] ; de plus, grâce au critère
spécial des séries alternées,

∑
kn converge simplement

sur [0, 1] et ∣∣∣∣∣
+∞∑

n=N+1
kn(x)

∣∣∣∣∣ ⩽ 1
(N + 2)s

donc
∑
kn converge uniformément sur [0, 1]. Il s’ensuit

que
∑+∞

0 kn est continue sur [0, 1], donc

lim
x→1

+∞∑
n=0

kn(x) =
+∞∑
n=0

kn(1) = f(s).

II.C.1. On a
∫ 1

0 v0 = 1/x.
Si n > 0, comme |t| ⩽ 1 et x > 0, tx ⩽ t−x donc∫ 1

0
vn = (−1)n

(
−

∫ 1

0
tx+n−1 dt+

∫ 1

0
t−x+n−1 dt

)
= (−1)n

(
− 1
x+ n

+ 1
−x+ n

)
= (−1)n 2x

n2 − x2 .

Voici un calcul formel (dont la justification est laissée
en exercice :-)

π

sin πx = 1
x

+
+∞∑
n=1

(−1)n 2x
x2 − n2

=
∫ 1

0
v0(t)dt−

+∞∑
n=1

∫ 1

0
vn(t)dt

=
∫ 1

0
v0(t)dt−

∫ 1

0

+∞∑
n=1

vn(t)dt

=
∫ 1

0

(
tx−1 −

+∞∑
n=1

(−1)n (tn−1−x − tn−1+x)
)

dt

=
∫ 1

0

(
tx−1 + t−x

1 + t
− tx

1 + t

)
dt

=
∫ 1

0

tx−1 + t−x

1 + t
dt

=
∫ 1

0

tx−1

1 + t
dt+

∫ +∞

1

ux−1

1 + u
du

=
∫ +∞

0

tx−1

1 + t
dt

en ayant posé u = 1/t.

II.C.2. D’abord, t 7→ ts/(a2 + t2) est continue et in-
tégrable sur ]0,+∞[ car ts/(a2 + t2) ∼t→0 t

s/a2 avec
s > 0 et ts/(a2 + t2) ∼t→+∞ 1/t2−s avec 2 − s > 1 :
donc I(a, s) existe. En posant t = au, on a

I(a, s) =
∫ +∞

0

asus

a2 + a2u2 adu

= as−1
∫ +∞

0

us

1 + u2 du.

En posant v = u2 qui est une bijection de classe C 1 de
]0,+∞[ dans lui-même,∫ +∞

0

us du
1 + u2 = 1

2

∫ +∞

0

v(s−1)/2

1 + v
dv

= π

2 sin( π
2 (s+ 1)) .

donc I(a, s) = πas−1

2 cos( π
2 s)

.

La fonction t 7→ ts−1 Arctan(a/t) est continue et inté-
grable sur ]0,+∞[ car ts−1 Arctan(a/t) ∼t→0 π/(2t1−s)
avec 1 − s < 1 et ts−1 Arctan(a/t) ∼t→+∞ a/t2−s avec
2 − s > 1 : donc J(a, s) existe. On fait une intégration
par parties, qui est licite car les termes manipulés ont
un sens :

J(a, s) =
[
ts

s
Arctan a

t

]+∞

0
+

∫ +∞

0

ts

s

a/t2

1 + a2/t2
dt

= a

s
I(a, s).

donc J(a, s) = πas

2s cos( π
2 s)

.

III.A.1. D’après II,

ϕN (x) = 1
2 −

+∞∑
n=N

2x
x2 + (2n+ 1)2π2 .

Pour encadrer cette somme, on pense à la comparer à
une intégrale. La fonction

ψ : t 7→ 2x
x2 + (2 t+ 1)2π2

est continue, décroissante et intégrable sur ]0,+∞[,∫ n+1

n

ψ(t)dt ⩽ ψ(n) ⩽
∫ n

n−1
ψ(t)dt,donc
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N

ψ(t)dt ⩽
+∞∑

n=N

ψ(n) ⩽
∫ +∞

N−1
ψ(t)dt.et

∫ +∞

N

ψ(t)dt = 2
x

∫ +∞

N

dt
1 + (2 t+ 1)2π2/x2Or

= 1
π

[
Arctan (2 t+ 1)π

x

]+∞

N

= 1
2 − 1

π
Arctan (2N + 1)π

x

et
∫ +∞

N−1
ψ(t)dt = 1

2 − 1
π

Arctan (2N − 1)π
x

donc

1
π

Arctan (2N − 1)π
x

⩽ ϕN (x)

⩽
1
π

Arctan (2N + 1)π
x

.

III.A.2. On a

Γ (s)f(s) =
∫ +∞

0

ts−1

et + 1 dt

=
∫ +∞

0
ts−1

(
ϕN (t) −

N−1∑
n=0

2 t
t2 + (2n+ 1)2π2

)
dt

=
∫ +∞

0
ts−1ϕN (t)dt

−
N−1∑
n=0

∫ +∞

0

2 ts

t2 + (2n+ 1)2π2 dt

∫ +∞

0

2 ts

t2 + (2n+ 1)2π2 dtOr

= 2I((2n+ 1)π, s) = (2n+ 1)s−1πs

cos( π
2 s)

donc
N−1∑
n=0

∫ +∞

0

2 ts

t2 + (2n+ 1)2π2 dt = πsKN (1 − s)
cos( π

2 s)
.

De plus, ∫ +∞

0
ts−1ϕN (t)dt

⩽
∫ +∞

0
ts−1 1

π
Arctan (2N + 1)π

t
dt

= 1
π
J((2N + 1)π, s) = (2N + 1)sπs

2s cos( π
2 s)

donc

π−s cos( π
2 s)Γ (s)f(s) ⩽ (2N + 1)s

2s −KN (1 − s).

En changeant 2N+1 en 2N−1, on obtient la minoration
demandée.

Quand N est grand,
(2N ± 1)s

2s ∼ Ns

s21−s
.

Par ailleurs, en remplaçant s par 1 − s dans I.B.3,

KN (1 − s) − Ns

s21−s
∼ (1 − 2s−1)ζ(1 − s)

donc les deux extrêmités de l’encadrement tendent vers
−(1 − 2s−1)ζ(1 − s). En passant à la limite sur N , on a
donc

π−s cos( π
2 s)Γ (s)f(s) = −(1 − 2s−1)ζ(1 − s)

et comme f(s) = (1 − 21−s)ζ(s), on en tire (E).

III.B.1. Voir le cours pour la classe C 1 de Γ (si :-).

Posons δn : t 7→

{
(1 − t/n)n ln t si t ∈ ]0, n]
0 si t > n.

Appliquons le théorème de convergence dominée à la
suite de fonctions (δn).

Les δn sont continues sur R∗
+ ; la suite de fonctions

(δn) converge simplement sur R+ vers δ : t 7→ e−t ln t ;
la fonction δ est continue sur R∗

+ ; d’après l’énoncé,
pour tout n ∈ N et tout t > 0, |δn(t)| ⩽ e−t | ln t|,
où t 7→ e−t | ln t| est intégrable sur R∗

+. Le théorème de
convergence dominée s’applique : les δn et δ sont inté-
grables sur R∗

+, et limn→+∞
∫ +∞

0 δn(t)dt =
∫ +∞

0 δ(t)dt.
Comme Γ ′(1) =

∫ +∞
0 e−t ln tdt,

lim
n→+∞

∫ n

0

(
1 + 1

n

)n

ln tdt = Γ ′(1).

III.B.2. En posant t = nu,∫ n

0

(
1 − t

n

)n

ln tdt = n

∫ 1

0
(1 − u)n ln(nu)du

= n lnn
∫ 1

0
(1 − u)n du+ n

∫ 1

0
(1 − u)n ln udu

= n

n+ 1 lnn+ n

∫ 1

0
(1 − u)n ln udu.

Par ailleurs, en intégrant par parties,∫ 1

0
(1 − u)n ln udu

=
[

1 − (1 − u)n+1

n+ 1 ln u
]1

0
−

∫ 1

0

1 − (1 − u)n+1

(n+ 1)u du

= −1
n+ 1

∫ 1

0

1 − (1 − u)n+1

1 − (1 − u) du

= −1
n+ 1

∫ 1

0

n∑
k=0

(1 − u)k du

= −1
n+ 1

n∑
k=0

1
k + 1 = −1

n+ 1Hn+1(1).

Ainsi, ∫ n

0

(
1 − t

n

)n

ln tdt

= n

n+ 1 lnn− n

n+ 1Hn+1(1)

−−−−−→
n→+∞

−U(1) = −γ.

On a bien Γ ′(1) = −γ.

III.B.3. En remplaçant s par 1 − s dans (E) on a

ζ(s) = 2(2π)s−1 cos( π
2 (1 − s))Γ (1 − s)ζ(1 − s).

Quand s est au voisinage de 0, on a

(2π)s = 1 + s ln(2π) + o(s),
cos( π

2 (1 − s)) = sin( π
2 s) = π

2 s+ o(s2),
Γ (1 − s) = Γ (1) − Γ ′(1)s+ o(s) = 1 + γ s+ o(s),

ζ(1 − s) = −1/s+ γ + o(1).

Ainsi, ζ(s) = − 1
2 − 1

2 ln(2π)s+ o(s).
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