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Corrigé du dix-neuvieme devoir a la maison

Commentaire. Selon la demande claire de ’énoncé, le
corrigé citera explicitement les théorémes utilisés.

I.A.1. Soient s > 0 et n € N*. Introduisons ¢ : t — 1/t
et & une primitive de ¢ sur |1, +o0]. Alors

un(s) = p(n) — / o(t)dt
=d'(n) — — &(n)).

(P(n+1)
Sur le segment [n,n + 1], ¢ décroit strictement donc
v < p(n), f:“ (t)dt < @(n) et u,(s) > 0.
De plus, d’apres 'inégalité de Taylor-Lagrange,
[B(n +1) = B(n) — &' (n)] < || "+
_ n,n+1] _ S
= ¢/t = 2

S

Finalement, 0 < u,(s) < g

I.LA.2. Or s+ 1> 1 car s >0 donc Y 1/n°"! converge
et | >_ uy, converge simplement sur ]0, +ool.

De plus, sur tout segment [a,b] C RY,
0 < up(s) < b/nott ou Y 1/nt converge, alors
> u, converge normalement donc uniformément sur
tout segment de R* et | U est continue sur R7 .

I.A.3. Soit s € R% ~ {1}. On a

N N 1 N n+l gy
_HN / /N+1dt
(N1=s —1)

s NHL q¢
1-s _/N It

AR [ |
Or / — < —— 0, donc
N tS NS N—)+OO

= Hn(s) —

i (Hv(s) — T ) = 69 = U(s) +

NS +oo 1—s s—1

I.A.4. De méme,

N N+1
dt
Zun(l):HN(l)*/ 7
n=1 1
=Hyx(1) — In(N 4+ 1),
donc
Hy(1) —InN = Zu ) +In +
n=1 " N
— U(1).
N —+o00
Comme u, (1) >0, U(1) > 0 donc
lim (Hy(1) —InN)=~=U(1) > 0.
N—+oc0

L.B.1. Posons f, : s — (=1)""1/n%. Si
o (i) les f, sont de classe € sur ]0, o0 ;
o (i1) la série de fonctions converge simplement
sur |0, 4o0[;
o (4i7) la série de fonctions Y f/ converge uniformément
sur tout segment de 0, 4+o00[;
alors
e la somme f = Z
o ['=5 0
Vérifions donc les hypotheses.
(i) Cest évident et f!(s) = (—1)"Inn/n®.
(#9) Pour s > 0, la suite numérique (|f,(s)|) tend vers 0
en décroissant donc la série numérique > f,,(s) converge
grace au critére spécial des séries alternées.

X [ est de classe €1 sur 0, +oo;

(#44) Pour s > 0, la suite numérique (| f},(s)|) tend vers 0,
mais elle ne décroit qu’a partir du rang n(s) = [e'/*]+1:
le critere spécial des séries alternées s’applique donc a
la série 3, -, fn(s) qui converge. I s’ensuit que la
série Y f/ (s) converge et que la série de fonctions > f)
converge simplement sur ]0, 4o00].

Pour la convergence uniforme, on veut majorer le
reste, mais on ne sait le faire qu’a partir du rang n(s),
donc pas uniformément. On se place alors sur [a, +00|
avec a > 0. Pour s € [a,+oo], la suite (|f,(5)])nzn(a)
décroit et pour n = n(a),

Z fu(s

k=n+1

Inn

< (sl <

ne

s - . /
On en déduit que la série de fonctions 3, -, ) fn
converge uniformément sur [a,+oo[ donc il en est de
méme pour la série de fonctions > f7.

I.B.2. On a
SQN(S)

Il
3|2
3

Il
S
=
Y
C'/
MZ
o
=N |

i
Loe
=

=10

1 2 1 1
- — 2N —FH _
= 2° i () 2o71 V)
@N)=s 1 N1-s
—H ey Hy(s) — .
anls) = T g (M) =

D’aprés 1.B.1 et I.A.3, en passant a la limite sur N,
| f(s) = (1—2""")¢(s).

1.B.3. Du calcul précédent, on tire

SQN(S)
LSS
2 @iy 22
1
= Kn(s) — 55 Hn(s)
Nl—e 1 Nl—e
= K6 -5y T (HN(S)_ ls)
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CORRIGE DU DIX-NEUVIEME DEVOIR A LA MAISON

et

) 5

= Son(s) + e (HN<s) - Zlvl_;>

e () 27(s) = (12 127 ),
donc

i (st - QJ(Vl_)) — (1-27)¢(s).

I.C. On a |f(s) — Sn(s)] < |fn41(s)| car > fn(s) est
alternée, donc si 'on prend Sy (s) comme valeur appro-
chée de f(s), pour que l’erreur commise soit inférieure
a e, il suffit de prendre |fni1(s)] = (N +1)7° < ¢,
c’est-a-dire N > ¢~ 1/¢ — 1. En prenant ¢ = 107! et
s=2,0onaN >99: il suffit de calculer Sgg(3), et
I’on trouve f(%) = 0,6 4 107! prés (par exces, puisque
Soa(s) > f(s)). Alors, ((5) = f(3)/(1 —2"/?) = —15

(par défaut & 10~! prés, & cause du changement de signe).

1.D. Soit a > 0. Pour s € [a, +00],

1 1
<
(N+1)s = (N+1)e

|f(s) = Sn(s)| <

donc Y f,, converge uniformément sur [a,4+o0c[. De plus,
fi=Tletsin>2 limg, o frn(s) = 0. Alors, la série
de ces limites converge (ce qui n’est vraiment pas une
surprise) et ’on peut permuter :

lim f(s)=1.

s—+00

I.E.1. D’apres les questions précédentes, U est continue
en 1 donc au voisinage de 1, U(s) = U(1) 4+ o(1), et

comme U(1) =y et {(s) =U(s) + s—il’

au voisinage de 1, {(s)

1
— 1).
-1 T tel)

I.E.2. D’une part,

+oo +oo lnn
PO =3 fm =Yt
n=1 n=1

D’autre part, f(s) = (1 —2'7%)((s). Quand s est au
voisinage de 1, en posant s = 1 + h,

1-2'7"=1—¢ "2 = pIn2 — L In?2h% + o(h?),
donc
f(s) = (hIn2— L m?2h% + o(h?)(+ + + o(1))
=In2+(ylm2-1 In®2) b+ o(h).

Par unicité du développement limité de f en 1 a l'ordre 1,

fl(1)=ym2-1 In? 2.
= In2
Finalement, Z(—l)" = (’y - 2) In 2.

n=1

Inn

n

2|4

IL.A. D’abord, a : t — t571/(e! + x) est conti-
nue sur ]0,4o0c0[. Quand t est au voisinage de +oo,
a(t) < 1/t% et t — 1/t? est intégrable sur |1, +oc].
Quand t est au voisinage de 0, a(t) ~ 1/[(z + 1)t} ~%] et
t > 1/t17% est intégrable sur |0,1] car 1 — s < 1.

s—1

. est bien intégrable sur |0, +o0].

t—

I1.B.1. Voici un calcul formel, que 'on justifiera ensuite.
Pour clarifier les justifications, on a numéroté les égalités

qui posent probléme.
+oo  ys—1 +oo 4s—1 ,—t
t t°" e
[ [,
o etz o l4uzet

+o0 too
/ t5 et Z(—l)"m”e*"tdt
0

n=0

“+o0 400
— Z(il)nxn / 51 ef(n+1)t d+
n=0 0

S [T ()

=y
=2 e @

n=0

du
n+1

U
n+1

et I'on a bien I’égalité demandée.
Justifions le calcul :

(1) Comme |z|<lett>0,|—ze*| <1 donc

—+oo

Z(—:ve_t)"

n=0

v
1—(—zet)’

(3) On a posé u = (n+1)¢ : il s’agit bien d’une bijection
de classe ¢! de Ry dans lui-méme, donc

s—1
> eiu

sont simultanément intégrable sur |0, +-o00[.

(2) Posons g, : t+— (—1)"z"t5~ e~ (nHD S

o (i) les g, sont continues par morceaux et intégrables

sur |0, +oo[;

o (i1) la série Y g, converge simplement sur ]0, 00| ;
‘e 400 .

o (i44) la somme g = > 7 gn est continue par mor-

ceaux sur |0, +o0[;

1
n+1

u
n+1

ts 57 e (Dt op 4y (

o (iv) la série > f0+°° |gn| converge,

alors
e ¢ est intégrable sur ]0, 4+o00[;
o 0+°°g =y 0+°° gn, ce qui est la justification
attendue.

Il reste a vérifier les hypotheses.
(i) Les g, sont évidemment continues sur |0, +o0o[. Quand
t— 0, [gn(t)] < |2 /t17% et t — 1/t17% est intégrable
sur ]0,1] car 1 — s < 1. Quand t — +o0, |g, ()] < 1/t%.
Donc g, est intégrable sur ]0, +o0].
(i7) Pour t > 0, la série > g, () est une série géométrique
de raison | — ze™t| € [0, 1] donc elle converge.
Commentaire. C’est en fait la justification (1) ci-dessus.
(#71) La somme est g : t — t5"te™t /(1 + xzel) qui évi-
demment continue sur |0, 40|
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(iv) Avec le changement de variable de la justification (3),
Iy = [/ 1gn] = |2|* I'(s)/(n + 1)*. On utilise la régle
de D’Alembert : I,,11/I, = |z| (1 +1/n)~° tend vers
|z| < 1 quand n — +oc0 et Zf;oo |gn| converge.

I1.B.2. Pour obtenir I’égalité voulue, il « suffit » de
faire tendre x vers 1 dans les deux membres. La encore,
il reste a justifier que c’est possible.

PREMIER MEMBRE. Par caractérisation séquentielle, il
suffit de prouver que pour toute suite (x,) de |—1,1]

tendant vers 1,
“+o0 s—1
t
Gl
et +x, o e+1

Soit une telle suite. Posons hy, : t — t°71/(et + x,,) et

utilisons le théoréme de convergence dominée : si

o (i) les h,, sont continues par morceaux sur |0, +ool;

o (it) la suite de fonctions (h,) converge simplement

sur ]0, +o0o[ vers une certaine fonction h;

o (i) h est continue par morceaux sur |0, +00[;

o (4v) il existe une fonction ¢ continue, positive et inté-

grable sur ]0, +o0[ telle que pour tout n € N, |h,| < ¢,
alors

e les h, et h sont intégrables sur |0, +oo[;

+oo s—1

lim dt.
n—-+o0o 0

o lim,_, o f;oo h, = f0+°° h, ce qui est exactement ce
que 'on voulait.
Vérifions les hypotheses :

(1), (i1) & (iii) Evident et h: ¢ — t571 /(e +1).
(iv) D’apres ILLA, h est intégrable sur ]0,+4oo[ (les
hy aussi). Comme |z,| < 1, pour t > 0 et n € N,
0 < hy(t) < h(t) et c’est la domination voulue.

SECOND MEMBRE. Notons ky, : x — (—1)" 2™ /(n + 1)°.
Les k,, sont continues sur [0, 1] ; de plus, grace au critére
spécial des séries alternées, > k, converge simplement
sur [0,1] et

> :
NI ——
n=N+1 (N + 2)

donc >k, converge uniformément sur [0,1]. Il s’ensuit
que S0k, est continue sur [0, 1], donc
+o00o +oo
lim > "k (z) =Y ka(1) = f(s).
n=0

z—1
n=0

II.C.1. On a fol vo = 1/x.

Sin >0, comme [t| <1etx>0,t* <t donc

1 1 1
/vn:(—l)”(—/ t”"—ldt+/ t_””+"_1dt>
0 0 0

n2 _ 2
Voici un calcul formel (dont la justification est laissée
en exercice :-)

™ 1 X 2z
sintx Z( ) 2 —n?
n=1
+oo

/01 /Olvn(t)dt

vot)dt — )

=1

3]4

- /Olvo(t)dt /01 +iovn(t)dlﬁ

n=1
1
/ (tzl _
0

+oo

Z(_l)n (tnflfa: _ tn1+m)>dt

n=1

1 _
= 1 — dt
/0< +1+t 1+t>
1 40—1 —x
t t
:/ Ty
o 1+t
1 42—1 +oo , x—1
t
:/ dt+/ Y qu
0 1+t 1 1+U

+o0 t?{:—l

/ at
y 11t

en ayant posé u = 1/t.
I1.C.2. D’abord, t +— t*/(a? + t?) est continue et in-
tégrable sur ]0, o0 car t*/(a? + t?) ~y_o t°/a® avec
s> 0et t5/(a® +t2) ~yyyoo 1/t27% avec 2 — s > 1 :
donc I(a, s) existe. En posant ¢t = au, on a

+oo
I(a,s) :/
0
+o00
:as—l/
0

En posant v = u? qui est une bijection de classe €' de

10, +00[ dans lui-méme,
+oo oo (s—1)/2
/0 /0 1+
7r
2sin(5(s+1))°

7ra3*1

a®u®
a? + a?u?

S

adu

U
du.
1+ u? Y

1

2

u’du

—_— d
1+ u? v

donc I(a,s) = m
2

La fonction ¢ — #5~1 Arctan(a/t) est continue et inté-
grable sur ]0, +-o0| car t*~1 Arctan(a/t) ~;_o 7/(2t179)
avec 1 —s < 1 et t*~1 Arctan(a/t) ~;_ 100 a/t>~% avec
2 —s>1:donc J(a,s) existe. On fait une intégration
par parties, qui est licite car les termes manipulés ont
un sens :

s +oo +00 4s 2
t a 5 aft
= | = Arctan - G —
Ila,s) [s rcant]o +/0 s 1+4a?/t?
a
=17 .
“ Ifa,5)
,n.aS
d J = —\
onc J(a,5) 25 cos(% s)
ITI.A.1. D’apres 11,
+oo
1 2z
on(@) = 2 7;\[ 224+ (2n+1)272°

Pour encadrer cette somme, on pense a la comparer a
une intégrale. La fonction

2z
22 4+ (2t + 1)2 72

est continue, décroissante et intégrable sur ]0, +ool,

n+1 n
done [ wmdt< v < [ RUOED

Pt
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+oo +oo +oo
et dt < Y w(n) < W(t)dt
n=N -
oo 2 [tee dt
t)ydt = —
Or N () x/N 1+ (2t+1)272 /22
+oo
= 1 {Arctan @t+lr Uﬂl
0 x N
_ L1 g retan BN LT
2 0w T
oo 11 2N —1
et P(t)dt = = — — Arctan @GN =l donc
N—1 2 ™ X
1 2N —1
— Arctan u < on ()
0 x
1 2N +1
< — Arctan (;)ﬂ-
T T
III.A.2. On a
“+oo tsfl
400 N-1
2t
_ s—1 _
_/0 ! <¢N(t) 2 t2+(2n+1)27r2>dt
n=0
+oo
_ / ts_1¢N( )
- 5 dt
Z / 24+ (2n+ 1)
2t°
Or /0 2+ (2n+1)2x72
2n+1)5txs
=21((2 1 =
(@24 1)m,9) = Fr s
donc
Z / e Kn(l—s)
2n+1) cos(5s)
De plus
+oo
/ ts 1¢N
0
< / Ar tan EV DT
0
1 (2N +1)°n®
= — 2N +1 =
T J(@N+1)m,s) 25cos(5 s)
donc
= cos(Z8) D(s) f(s) < CEA D pei1—s).

2s
En changeant 2N +1 en 2N —1, on obtient la minoration
demandée.

Quand N est grand,

(2N £1)° N*
2s §21=s’
Par ailleurs, en remplacant s par 1 — s dans 1.B.3,
N* s—1
KN(l—S)—ﬁN(1—2 )C(1 =)

donc les deux extrémités de I'encadrement tendent vers
—(1—=2°71)¢(1 — 5). En passant & la limite sur N, on a
donc

7% cos(

s)I'(s )f( )=—-(1-271¢1 - s)

) = (1 —2'7%)¢(s), on en tire (E).

et comme f(s

414

II1.B.1. Voir le cours pour la classe ¢! de I" (si :-).
(1—t/n)"Int sitel0,n]

0 sit>n.
Appliquons le théoréme de convergence dominée a la
suite de fonctions ().

Les 0, sont continues sur R ; la suite de fonctions
(0,) converge simplement sur R, vers § : ¢t — e~ ! Int;
la fonction  est continue sur R? ; d’apres ’énoncé,
pour tout n € N et tout ¢ > 0, |§,(t)] < e”*|Int],
ot t — e*|Int| est intégrable sur R% . Le théoréme de
convergence dominée s’applique : les d,, et § sont inté-

Posons 6, : t —

grables sur R* , et lim,, 4o f0+oo Sp(t)dt = 0+OO 5(t)dt.
Comme I"(1) = 0+°° e tlntdt,

lim
n—-+oo

n 1 n
/(1+) Intdt = I"(1).
0 n

ITI.B.2. En posant t = nu,

/On(l _ ;)” Intdt = "/01(1 — W)™ In(nw)du

1 1
:nlnn/ (1—u)"du+n/ (1 —w)"Inudu
0 0

1
r 1 lnn+n/ (1 —w)" Inudu.
0

n —+

Par ailleurs, en intégrant par parties,

1
/ (1 —w)"Inudu
0

1— _ o\n+1 1 11 o\n+1
:{Mlnu} _/ il Ct) K
n+1 o Jo (n+1)u
—1 [f1—(1—u)"t?
= / (1= u) du
n+1 1—(1—u)
= 1—w)*d
n—|—1/0 Z( u)" du
N | ~1
= H 1
n+1zk+1 1 nr(d:
Ainsi,
n n
/(1—t> Intdt
0 n
n
Tarl T ny n1l)
e JW =1

| On a bien I"(1) = —v.

II1.B.3. En remplacant s par 1 — s dans (F) on a
((s) =22m) " cos(Z (1 — 5)) (1 — $)¢(1 - )
Quand s est au voisinage de 0, on a
(27)° =1+ sln(27) + o(s),
cos(Z (1 —s)) =sin(Zs) = T s+ o(s?),
IFl—s)=IQ1)—I"(1)s+o(s) =14+vs+o(s),
C(1—5)=—-1/s+~v+o0(1).

|Ainsi, C(s) =—3 — 3 In(2m)s + o(s).




