Deuxième devoir à la maison

[E3A16]

L'usage de calculatrices est interdit

La question étoilée est réservée aux 5/2 et aux 3/2 aventureux.

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels. Pour tout $n\in\mathbb{N}^*$, on pose :

$$b_n = n(a_n - a_{n+1}), \ A_n = \sum_{k=1}^n a_k \text{ et } B_n = \sum_{k=1}^n b_k$$

- 1. On prend dans cette question, pour tout $n \ge 1$, $a_n = \frac{1}{2^{n-1}}$.
 - 1.1 Vérifier que $\sum_{n\geqslant 1} a_n$ converge et calculer sa somme.
 - 1.2 * Déterminer le rayon de convergence de la série entière $\sum_{n\geqslant 1} n x^{n-1}$.
 - 1.3 Montrer que la série $\sum_{n\geqslant 1} b_n$ converge et calculer sa somme.
- **2.** On prend dans cette question, $a_n = \frac{1}{n \ln(n)}$, $n \ge 2$ et $a_1 = 0$.
 - **2.1** Étudier la monotonie et la convergence de la suite $(a_n)_{n\geqslant 2}$.
 - **2.2** Quelle est la nature de la série $\sum_{n\geq 1} a_n$?
 - **2.3** Calculer $\lim_{n\to+\infty} n a_n$.
 - **2.4** Quelle est la nature de la série $\sum_{n\geqslant 1}b_n$?

- 3. On suppose dans cette question que la série $\sum_{n\geqslant 1} a_n \text{ converge et que la suite } (a_n)_{n\in\mathbb{N}^*} \text{ est une suite décroissante de réels positifs.}$
 - **3.1** Pour tout entier naturel n non nul, on note $u_n = \sum_{p=n+1}^{2n} a_p$. Montrer que :

$$\forall n \in \mathbb{N}^*, \ n a_{2n} \leq u_n.$$

- **3.2** En déduire $\lim_{n\to+\infty} n a_{2n}$.
- **3.3** Démontrer alors que $\lim_{n\to+\infty} n a_n = 0$.
- **3.4** Montrer que la série $\sum_{n\geqslant 1} b_n$ converge.
- **3.5** A-t-on $\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} b_n$?
- 4. On suppose dans cette question que la série $\sum_{n\geqslant 1}b_n \text{ converge et que la suite } (a_n)_{n\in\mathbb{N}^*} \text{ est positive, décroissante et de limite nulle.}$
 - 4.1 Vérifier que :

$$\forall m \in \mathbb{N}^*, \ m \leqslant n, \ B_n \geqslant A_m - m a_{n+1}.$$

- **4.2** En déduire que $\sum_{n\geqslant 1} a_n$ converge.
- **4.3** Peut-on en déduire que $\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} b_n$?