Corrigé du deuxième devoir à la maison

1.1. La série $\sum_{n\geqslant 1} a_n$ converge, comme série géométrique de raison $\frac{1}{2}$. De plus,

$$\sum_{n=1}^{+\infty} a_n = \frac{1}{1 - \frac{1}{2}} = 2.$$

1.2.* On reconnait la série entière dérivée de $\sum_{n\geqslant 0} x^n$, donc d'après le cours, elle a le même rayon de convergence :

le rayon de convergence cherché vaut 1.

1.3. Pour $n \in \mathbb{N}^*$.

$$b_n = n\left(\frac{1}{2^{n-1}} - \frac{1}{2^n}\right) = \frac{n}{2^n} \ll \frac{1}{n^2},$$

donc | la série $\sum_{n\geqslant 1} b_n$ converge.

De plus, en maniant les sommes partielles,

$$\sum_{k=1}^{n} b_k = \sum_{k=1}^{n} \frac{k}{2^k} = \sum_{k=1}^{n} \sum_{p=1}^{k} \frac{1}{2^k},$$

en constatant que $k = \sum_{p=1}^{k} 1$. Alors, en permutant les sommes finies,

$$\sum_{k=1}^{n} b_k = \sum_{p=1}^{n} \sum_{k=p}^{n} \frac{1}{2^k} = \sum_{p=1}^{n} \frac{\frac{1}{2^p} - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}}$$
$$= 2 \sum_{p=1}^{n} \frac{1}{2^p} - 2 \sum_{p=1}^{n} \frac{1}{2^{n+1}}$$
$$= \sum_{p=1}^{n} \frac{1}{2^{p-1}} - \frac{n}{2^n} \xrightarrow[n \to +\infty]{} 2,$$

$$\operatorname{donc}\left[\sum_{n=1}^{+\infty}b_n=2.\right]$$

2.1. Puisque les suites $(n)_{n\geqslant 2}$ et $(\ln n)_{n\geqslant 2}$ sont positives et croissent vers $+\infty$,

la suite $(a_n)_{n\geqslant 1}$ décroit vers 0.

2.2. De même, la fonction $f: t \mapsto \frac{1}{t \ln t}$ est continue et décroissante sur $[2, +\infty[$. Faisons une comparaison série-intégrale. Grâce à la décroissance de f, pour $n \geqslant 2$,

$$a_n = f(n) \geqslant \int_n^{n+1} f(t) dt,$$

donc

$$\sum_{k=2}^{n} a_k \geqslant \sum_{k=2}^{n} \int_{k}^{k+1} f(t) dt = \int_{2}^{n+1} f(t) dt.$$

Or

$$\int_{2}^{n+1} \frac{\mathrm{d}t}{t \ln t} = \left[\ln \ln t \right]_{2}^{n+1} = \ln \ln (n+1) - \ln \ln 2$$
$$\xrightarrow[n \to +\infty]{} +\infty.$$

Donc $\sum_{n\geqslant 1} a_n$ diverge.

- **2.3.** Clairement, $|\lim_{n\to+\infty} n a_n = 0$.
- **2.4.** Pour $n \ge 1$,

$$b_n = n a_n - n a_{n+1}$$

= $n a_n - (n+1) a_{n+1} + a_{n+1}$.

Or la série $\sum_{n\geqslant 1}(n\,a_n-(n+1)\,a_{n+1})$ est de même nature que la suite $(n\,a_n)_{n\geqslant 1}$, qui converge, donc cette série converge. En revanche, la série $\sum_{n\geqslant 1}a_{n+1}$ diverge, d'après la question 2.b.

Donc la série $\sum_{n\geqslant 1} b_n$ diverge.

3.1. Soit $n \in \mathbb{N}^*$. Comme la suite $(a_p)_{p\geqslant 1}$ décroit, pour tout $p \in [n+1,2n]$, $a_p \geqslant a_{2n}$. En sommant ces inégalités membre à membre, on obtient

$$\sum_{p=n+1}^{2n} a_p \geqslant \sum_{p=n+1}^{2n} a_{2n},$$

ou encore, $|u_n| \ge n a_{2n}$.

3.2. Puisque la série $\sum_{n\geqslant 1}a_n$ converge, on peut introduire ses restes, définis pour $n\geqslant 1$ par

$$R_n = \sum_{p=n+1}^{+\infty} a_p.$$

De plus, $\lim_{n\to+\infty} R_n = 0$. Alors,

$$u_n = \sum_{p=n+1}^{+\infty} a_p - \sum_{p=2n+1}^{+\infty} a_p = R_n - R_{2n} \xrightarrow[n \to +\infty]{} 0.$$

Alors, par majoration, $\lim_{n\to+\infty} n a_{2n} = 0$.

3.3. Bien-sûr, on en tire que $\lim_{n\to+\infty} 2n a_{2n} = 0$. En outre, par décroissance de $(a_n)_{n\geq 1}$, pour $n\geq 1$,

$$(2n+1)a_{2n+1} \le (2n+1)a_{2n}$$

= $2na_{2n} + a_{2n} \xrightarrow[n \to +\infty]{} 0$,

d'après la limite précédente d'une part, et d'autre part, parce que $\lim_{n\to+\infty} a_{2n} = 0$ puisque $\sum_{n\geqslant 1} a_n$ converge. Alors, comme ses deux suites extraites d'indices pairs et impairs convergent vers 0,

la suite $(n a_n)_{n \geqslant 1}$ converge vers 0.

3.4. Comme à la question 2.4, pour $n \ge 1$.

$$b_n = n a_n - (n+1) a_{n+1} + a_{n+1}$$

où la série $\sum_{n\geqslant 1}(n\,a_n-(n+1)\,a_{n+1})$ converge. Mais ici, la série $\sum_{n\geqslant 1}a_{n+1}$ converge par hypothèse, donc

la série $\sum_{n\geqslant 1} b_n$ converge.

3.5. De plus, pour $n \ge 1$,

$$\sum_{k=1}^{n} b_k = \sum_{k=1}^{n} (k a_k - (k+1) a_{k+1} + a_{k+1})$$

$$= \sum_{k=1}^{n} (k a_k - (k+1) a_{k+1}) + \sum_{k=1}^{n} a_{k+1}$$

$$= a_1 - (n+1) a_{n+1} + \sum_{k=2}^{n+1} a_k$$

$$= \sum_{k=1}^{n+1} a_k - (n+1) a_{n+1}.$$

Comme $\lim_{n\to+\infty} (n+1) a_{n+1} = 0$, à la limite on a

$$\sum_{n=1}^{+\infty} b_n = \sum_{n=1}^{+\infty} a_n.$$

4.1. Soient deux entiers tels que $n \ge m \ge 1$. D'après le calcul précédent,

$$B_n = \sum_{k=1}^n b_k = \sum_{k=1}^{n+1} a_k - (n+1)a_{n+1}$$
$$= \sum_{k=1}^m a_k + \sum_{k=m+1}^{n+1} a_k - (n+1)a_{n+1}$$

Comme $n \ge m$ et que la suite (a_n) est décroissante et positive, pour tout $k \in [m+1, n+1], a_k \ge a_{n+1}$.

Donc

$$\sum_{k=m+1}^{n+1} a_k \geqslant \sum_{k=m+1}^{n+1} a_{n+1}$$

$$= (n+1-(m+1)+1) a_{n+1}$$

$$= (n+1-m) a_{n+1}$$

et

$$|B_n| \ge \sum_{k=1}^m a_k + (n+1-m)a_{n+1} - (n+1)a_{n+1}$$

$$= A_m - ma_{n+1}.$$

4.2. Fixons m et faisons tendre n vers $+\infty$. Comme $\sum b_n$ converge, $\lim_{n\to +\infty} B_n = \sum_{k=0}^{+\infty} b_k$. Notons B cette somme. De plus, par hypothèse, $\lim_{n\to +\infty} a_{n+1}=0$. Alors, en passant à la limite sur n dans la majoration précédente, $A_m\leqslant B$. Cela signifie que les sommes partielles de la série $\sum_{k\geqslant 1} a_k$ sont majorées, et comme cette série est à termes positifs,

$$\sum_{k\geqslant 1} a_k$$
 converge.

4.3. Ainsi, la suite $(a_n)_{n\geqslant 1}$ est décroissante et positive, et la série $\sum_{n\geqslant 1}a_n$ converge. On est ramené aux hypothèses de la question 3 et l'on en déduit que la suite $(na_n)_{n\geqslant 1}$ converge vers 0. Alors, de l'égalité $B_n = A_{n+1} - (n+1)a_{n+1}$ tirée de la question 3.5, on déduit qu'à la limite sur n,

$$\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} b_n.$$