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Corrigé du vingt-et-unième devoir à la maison

Convention. Pour simplifier les écritures, convenons
dans tout le corrigé que

(C) ∀(p, q) ∈ N2, p > q =⇒
(

q

p

)
= 0.

Cette convention est cohérente avec la simplification(
q

p

)
= 1

p!

p−1∏
j=0

(q − j),

valable si 1 ⩽ p ⩽ q, où l’on voit que si p > q, l’indice
j = q est possible et annule le produit.

A.1. Soit P ∈ Rn[X] ∖ {0}. En notant d = deg(P ),
d ∈ N et l’on peut écrire P =

∑d
k=0 ak Xk avec

ad = cd(P ) et ad ̸= 0. Alors

τ(P )(X) = P (X + 1) =
d∑

k=0
ak (X + 1)k.

Alors clairement,

deg(τ(P )) = d = deg(P ),
et cd(τ(P )) = ad = cd(P ).

A.2. Par une récurrence immédiate, on voit que

∀k ∈ N, τk(P )(X) = P (X + k).

En effet, c’est vrai au rang 0 : τ0(P )(X) = P (X) ; et
si l’on suppose que c’est vrai pour un certain k ∈ N,

τk+1(P )(X) = τ(τk(P ))(X) = τk(P )(X + 1)
= P ((X + 1) + k) = P (X + k + 1).

A.3. Soit j ∈ [[1, n + 1]]. La colonne j de M contient
les coordonnées de τ(Pj) dans la base (Pi)1⩽i⩽n+1 :

τ(Pj)(X) =
n+1∑
i=1

Mi,j Pi(X).

Par ailleurs, avec la convention (C),

τ(Pj)(X) = Pj(X + 1) = (X + 1)j−1

=
j−1∑
i=0

(
j − 1

i

)
Xi =

j∑
i=1

(
j − 1
i − 1

)
Xi−1

=
j∑

i=1

(
j − 1
i − 1

)
Pi(X) =

n+1∑
i=1

(
j − 1
i − 1

)
Pi(X).

Ainsi, par unicité des coordonnées de τ(Pj) dans la
base (Pi)1⩽i⩽n+1,

∀(i, j) ∈ [[1, n + 1]]2, Mi,j =
(

j − 1
i − 1

)
.

A.4.* Où l’on voit que M est triangulaire supérieure,
donc ses valeurs propres se lisent sur sa diagonale,
laquelle ne contient que des 1. Et les valeurs propres
de τ sont celles de M , donc Sp(τ) = {1}.

Alors l’endomorphisme τ n’est pas diagonalisable.
S’il l’était, M serait semblable à la matrice diagonale
qui n’a que des 1 sur la diagonale, c’est-à-dire In+1,
ce qui n’est pas, car seule In+1 est semblable à In+1.

A.5. L’endomorphisme τ est bijectif, car il n’admet
pas 0 comme valeur propre. De plus, clairement,

τ−1 : Rn[X] → Rn[X], P (X) 7→ P (X − 1).

Et l’on voit par une récurrence analogue à celle de
la question A.2 que

∀j ∈ Z, τ j(P )(X) = P (X + j).

A.6. Soit j ∈ [[1, n + 1]].

τ−1(Pj)(X) = Pj(X − 1) = (X − 1)j−1

=
j−1∑
i=0

(−1)j−1−i

(
j − 1

i

)
Xi

=
j∑

i=1
(−1)j−1−(i−1)

(
j − 1
i − 1

)
Xi−1

=
j∑

i=1
(−1)j−i

(
j − 1
i − 1

)
Pi(X).

Comme en A.3, et avec la convention (C),

∀(i, j) ∈ [[1, n + 1]]2, (M−1)i,j = (−1)j−i

(
j − 1
i − 1

)
.

A.7. Considérons les colonnes

U =


u0
u1
...

un

 et V =


v0
v1
...

vn


de Mn+1,1(R), de sorte que

V = QU.

Si l’on écrit Q = (Qi,j)1⩽i,j⩽n+1, U⊤ = (Uj)1⩽j⩽n+1
et V ⊤ = (Vi)1⩽i⩽n+1, alors pour tout i ∈ [[1, n + 1]],

Vi =
n+1∑
j=1

Qi,j Uj ,

ou encore, puisque Vi = vi−1 et Uj = uj−1,

vi−1 =
n+1∑
j=1

Qi,j uj−1.
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Or, avec la convention (C), et en posant k = i − 1
dans la relation (1),

vi−1 =
i−1∑
j=0

(
i − 1

j

)
uj =

i∑
j=1

(
i − 1
j − 1

)
uj−1

=
n+1∑
j=1

(
i − 1
j − 1

)
uj−1.

Donc, avec la question A.3,

Qi,j =
(

i − 1
j − 1

)
= Mj,i,

d’où Q = M⊤.

A.8. Alors U = Q−1 V où Q−1 = (M−1)⊤, ce qui
donne pour tout i ∈ [[1, n + 1]],

Ui =
n+1∑
j=1

(Q−1)i,j Vj =
n+1∑
j=1

(M−1)j,i Vj

=
n+1∑
j=1

(−1)i−j

(
i − 1
j − 1

)
Vj ,

ou encore

ui−1 =
i∑

j=1
(−1)i−j

(
i − 1
j − 1

)
vj−1

=
i−1∑
j=0

(−1)i−(j+1)
(

i − 1
j

)
vj

=
i−1∑
j=0

(−1)i−1−j

(
i − 1

j

)
vj .

Comme cette expression ne dépend pas de n, on en
tire en posant k = i − 1,

(2) ∀k ∈ N, uk =
k∑

j=0
(−1)k−j

(
k

j

)
vj .

A.9. Ici, uk = λk pour tout k ∈ N, donc

vk =
k∑

j=0

(
k

j

)
uj =

k∑
j=0

(
k

j

)
λj = (1 + λ)k.

Alors,
k∑

j=0
(−1)k−j

(
k

j

)
vj =

k∑
j=0

(−1)k−j

(
k

j

)
(1 + λ)j

= (1 + λ − 1)k = λk = uk,

où l’on retrouve bien la relation (2).

B.1. Soit P non constant : il s’écrit P =
∑d

k=0 ak Xk

avec ad ̸= 0 et d ⩾ 1. Alors

δ(P )(X) = P (X+1)−P (X) =
d∑

k=1
ak((X+1)k−Xk).

Pour tout k ∈ [[1, d]],

(X + 1)k − Xk =
k−1∑
j=0

(
k

j

)
Xj

donc

deg(δ(P )) = d − 1 = deg(P ) − 1
et cd(δ(P )) = dad = d cd(P ).

B.2. Soit P ∈ Rn[X]. Si deg(P ) ⩾ 1, avec ce qui pré-
cède cd(δ(P )) ̸= 0 donc δ(P ) ̸= 0 et P /∈ ker(δ). Donc
ker(δ) ⊂ R0[X]. Réciproquement, si P est constant,
on voit que δ(P ) = 0 donc R0[X] ⊂ ker(δ).

Ainsi, ker(δ) = R0[X].
Donc d’après le théorème du rang, rg(δ) = n. Et

d’après la question précédente, Im(δ) ⊂ Rn−1[X].
Comme dim(Rn−1[X]) = n, il s’ensuit que

Im(δ) = Rn−1[X].

B.3. Procédons par récurrence sur j.

Initialisation. La question précédente l’établit.

Transmission. Supposons que les relations soient
vraies pour un certain j ⩽ n−1. Comme δj+1 = δj ◦δ,
pour tout P ∈ Rn[X],

P ∈ ker(δj+1) ⇐⇒ δ(P ) ∈ ker(δj).

D’une part, ker(δj) = Rj−1[X] d’après l’hypothèse de
récurrence ; et d’autre part, deg(P ) = deg(δ(P )) + 1
d’après la question B.1. Donc

δ(P ) ∈ ker(δj) ⇐⇒ P ∈ Rj [X].

Ainsi, ker(δj+1) = Rj [X].
D’après le théorème du rang,

rg(δj+1) = n + 1 − (j + 1) = n − j.

Puisque δj+1 = δ ◦ δj , pour tout P ∈ Rn[X],

deg(δj+1(P )) = deg(δj(P )) − 1.

Et d’après l’hypothèse de récurrence, comme
δj(P ) ∈ Im(δj) = Rn−j [X], deg(δj(P )) ⩽ n − j
donc deg(δj+1(P )) ⩽ n − j − 1 = n − (j + 1). Ainsi,
Im(δj+1) ⊂ Rn−(j+1)[X]. Avec les dimensions, on en
tire que Im(δj+1) = Rn−(j+1)[X].

Ainsi, la transmission est acquise.

Conclusion. D’après le principe de récurrence,
les relations (3) sont vraies pour tout j ∈ [[1, n]].

B.4. Puisque δ = τ − IdRn[X] et que τ et IdRn[X]
commutent, d’après le binôme de Newton,

∀k ∈ N, δk =
k∑

j=0
(−1)k−j

(
k

j

)
τ j .

Donc pour tout P ∈ Rn[X] et tout k ∈ N,

δk(P ) =
k∑

j=0
(−1)k−j

(
k

j

)
τ j(P ).
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B.5. Soit P ∈ Rn−1[X]. D’après les relations (3),
Rn−1[X] = ker(δn), donc δn(P ) = 0. Alors, d’après
la question précédente,

n∑
j=0

(−1)n−j

(
n

j

)
τ j(P ) = 0.

En outre, avec la question A.2, pour tout j ∈ N,
τ j(P ) = P (X + j). Donc en évaluant le relation pré-
cédente en 0,

(4)
n∑

j=0
(−1)n−j

(
n

j

)
P (j) = 0.

B.6.a. Comme u2 = δ, δ2 = u4, donc comme poly-
nôme en u, δ2 commute avec u.

B.6.b. D’après le cours, on sait que pour deux en-
domorphismes qui commutent, le noyau et l’image
de l’un sont stables par l’autre. Ici, cela entraine la
stabilité par u de ker(δ2). Et ker(δ2) = R1[X] d’après
les relations (3). Ainsi, R1[X] est stable par u.

B.6.c. Soit A =
(

a c
b d

)
.

A2 =
(

0 1
0 0

)
⇐⇒


a2 + bc = 0, L1

b(a + d) = 0, L2

c(a + d) = 1, L3

bc + d2 = 0. L4

De L3 on tire que c ̸= 0 et a + d ̸= 0. De L2 on
tire alors que b = 0. De L1 et L4 on tire donc que
a2 = d2 = 0, donc a = d = 0. Cela entraine que
a + d = 0, ce qui contredit l’équation L3.

Donc une telle matrice A n’existe pas.

B.6.d. D’après la question B.6.b, R1[X] est stable
par u. Donc u induit un endomorphisme ũ sur R1[X].
Bien-sûr, R1[X] = ker(δ2) est aussi stable par δ, le-
quel y induit donc un endomorphisme δ̃.

Considérons la base B = (P1, P2) de R1[X],
A = matB(ũ) et B = matB(δ̃). Comme u2 = δ,
ũ 2 = δ̃, donc A2 = B. En outre, δ(P1) = 0 et

δ(P2) = (X + 1) − X = 1 = P1.

Donc B =
(

0 1
0 0

)
. On est donc ramené à la question

précédente, qui affirme que A n’existe pas.
Donc il n’existe aucun endomorphisme u de Rn[X]
tel que u2 = δ.

B.7.a. Soit P ≠ 0 de degré d. D’après la question B.1,
et une récurrence immédiate, pour tout j ∈ [[0, d]],
deg(δj(P )) = d − j, donc puisqu’elle est échelonnée
en degré,

la famille (δj(P ))0⩽j⩽d est libre.

Donc Vect((δj(P ))0⩽j⩽d) est de dimension d + 1.
Or Vect((δj(P ))0⩽j⩽d) ⊂ Rd[X], donc

Vect((δj(P ))0⩽j⩽d) = Rd[X].

B.7.b. Soit V ̸= {0} un sous-espace vectoriel de
Rn[X] stable par δ. Considérons l’ensemble des degrés
entiers des polynômes de V :

D = {p ∈ N | ∃P ∈ V, deg(P ) = p}.

D n’est pas vide, car V contient au moins un poly-
nôme non nul. D est majoré par n car tout polynôme
de V est dans Rn[X]. Ainsi, D est une partie non
vide et majorée de N : donc d = max(D) existe.

Soit donc P ∈ V tel que deg(P ) = d. Comme V est
stable par δ, pour tout j ∈ [[0, d]], δj(P ) ∈ V . Donc
Vect((δj(P ))0⩽j⩽d) ⊂ V . Donc Rd[X] ⊂ V d’après la
question précédente.

Par ailleurs, puisque d = max(D), pour tout
Q ∈ V , deg(Q) ⩽ d, donc V ⊂ Rd[X].

Ainsi, V = Rd[X].
Les sous-espaces vectoriels de Rn[X] stables par δ
sont exactement les Rd[X] où d ∈ [[0, n]].
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