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Corrigé du vingt-troisième devoir à la maison
QC1. D’après le cours,

dim E = n
2 et (Ei,j)1↭i,j↭n est une base de E .

QC2. D’après le cours, Ei,j Ek,ω = ωjk Ei,ω, en utilisant
le symbole de Kronecker.

QC3. Le polynôme caractéristique d’une matrice carrée
en est un polynôme annulateur.

QC4. Une matrice de Mn(K) est trigonalisable si et
seulement si son polynôme caractéristique est scindé
sur K.

I.1. Non. En e!et, A est nilpotente donc il existe p → N→

tel que A
p = On, d’où det(Ap) = 0 et det(A) = 0.

I.2. Comme A
p = On, le polynôme X

p est annulateur
de A. Parmi ses racines figurent les valeurs propres de A,
donc la seule possible est 0. Comme A n’est pas inver-
sible, 0 est e!ectivement valeur propre de A.

Donc Sp(A) = {0} et εA = X
n.

I.3. Alors, A est diagonalisable si et seulement si le
polynôme

∏
ε↑Sp(A)(X ↑ ϑ) est annulateur, c’est-à-dire

si X est annulateur, c’est-à-dire A = On.

I.4. Oui, car toute matrice de Vect(A) s’écrit ϑA, où
ϑ → R, donc (ϑA)p = ϑ

p
A

p = On et ϑA est nilpotente.

I.5. Oui, car (A↓)p = (Ap)↓ = On.

I.6. Si M est semblable à A, elle représente le même
endomorphisme que A. Donc M

p représente le même
endomorphisme que A

p = On, donc M
p = On et

M est nilpotente.

I.7. Puisque εA = X
n et d’après le théorème de Cayley-

Hamilton, A
n = On.

I.8. Oui !
Commentaire. Comme le suggère l’énoncé, dorénavant,
nous utiliserons implicitement ce résultat.

I.9. Oui, car εA est scindé sur R.
Comme A n’est pas inversible, rg(A) ↭ n ↑ 1. En

outre, en prenant

A =





0 1 (0)
. . . . . .

. . . 1
(0) 0




,

clairement εA = X
n donc A

n = On, A est nilpotente et
de rang n ↑ 1.

Le rang maximal d’une matrice nilpotente est n ↑ 1.

I.10.1. Comme B C → N , (B C)n = On, donc
C (B C)n

B = On, c’est-à-dire (C B)n+1 = On et

C B → N .

I.10.2. Comme A et B commutent,

(AB)n = A
n

B
n = On.

Et d’après le binôme de Newton,

(A + B)2n =
2n∑

k=0

(
2n

k

)
A

k
B

2n↔k

=
n∑

k=0

(
2n

k

)
A

k
B

2n↔k +
2n∑

k=n+1

(
2n

k

)
A

k
B

2n↔k
.

Dans la première somme 2n ↑ k ↫ n donc B
2n↔k = On ;

dans la seconde, k ↫ n donc A
k = On. Alors

(A + B)2n = On.

AB et A + B sont nilpotentes.

I.11. Une matrice symétrique réelle est diagonalisable.
Si elle est nilpotente, elle est nulle d’après la question 3.

Seule la matrice nulle est à la fois symétrique réelle
et nilpotente.

I.12.1. Comme A
↓ = ↑A, (A2)↓ = (A↓)2 = A

2,
donc A

2 est symétrique réelle, et nilpotente car
(A2)n = A

2n = On. D’après la question précédente,

A
2 = On.

I.12.2. Alors Tr(A2) = 0. Mais aussi,
Tr(A2) = ↑ Tr(A↓

A) = ↑↓A↓2, où l’on a reconnu
la norme euclidienne usuelle dans E . Donc ↓A↓ = 0 et
A = On.

Seule la matrice nulle est à la fois antisymétrique et
nilpotente.

II.1.1. Comme M est triangulaire supérieure, ses va-
leurs propres figurent sur sa diagonale, donc

Sp(M) = {0}.

En outre, clairement rg(M) = n ↑ 1 donc
dim E0(M) = 1. Enfin, puisque la première colonne
de M est nulle,

E0(M) = R





1
0
...
0




.
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II.1.2. Clairement, S est symétrique non nulle, donc
d’après la question I.11, S /→ N .

Notons J la matrice remplie de 1, de sorte que
S = J ↑In. Puisque J et In commutent et que J

2 = nJ ,
S

2 = J
2 ↑ 2J + In = (n ↑ 2)J + In

= (n ↑ 2)(S + In) + In = (n ↑ 2)S + (n ↑ 1)In.

Ainsi, S
2 → Vect(S, In).

De plus, le polynôme X
2 ↑ (n ↑ 2)X ↑ (n ↑ 1) est

annulateur de S, donc parmi ses racines, ↑1 et n ↑ 1,
figurent les valeurs propres de S. Mais S est diagonali-
sable et n’est pas colinéaire à In, donc elle a au moins
deux valeurs propres. Ainsi,

Sp(S) = {↑1, n ↑ 1}.

Enfin, si X =




x1
...

xn



, S X = ↑ X ↔↗
∑n

i=1 xi =0,

donc E↔1(S) est l’hyperplan d’équation
∑n

i=1 xi = 0 ; et
puisque les sous-espaces propres de S sont orthogonaux,
car S est symétrique réelle, En↔1(S) est engendré par le
vecteur colonne rempli de 1, qui est normal à l’hyperplan
précédent.

II.1.3. Non, car l’on vient d’exhiber deux matrices
nilpotentes, M et M

↓, dont la somme, S, n’est pas
nilpotente.

II.2.1. D’après le théorème de Cayley-Hamilton,
M

2 ↑ Tr(M)M + det(M)I2 = 0. Et comme rg(M) = 1,
det(M) = 0 et M

2 = Tr(M)M .
Si Tr(M) ↘= 0, alors le polynôme X (X ↑ Tr(M))

annulateur de M est scindé à racines simples, donc
M est diagonalisable.

Si Tr(M) = 0, alors M
2 = 0 et M est nilpotente.

II.2.2. La matrice A =
(

1 ↑1
1 ↑1

)
convient.

II.2.3. Soit A nilpotente : A
2 = O2, donc Tr(A) = 0 et

det(A) = 0. Alors elle s’écrit

A =
(

a c

b ↑a

)
,

avec a
2 ↑ bc = 0. Réciproquement, si A a cette forme,

Tr(A) = det(A) = 0 et A
2 = O2.

L’ensemble des matrices nilpotentes de taille 2 est{(
a c

b ↑a

) ∣∣∣ a
2 = bc

}
.

III.1. Comme la trace est une forme linéaire non nulle,
T0 = Ker(Tr) est un hyperplan de E , donc

dim(T0) = n
2 ↑ 1.

III.2. Comme on l’a vu, toute matrice A de N vérifie
εA = X

n, donc Tr(A) = 0, car c’est, au signe près, le
coe"cient de X

n↔1 dans εA. Ainsi,
N ≃ T0.

Et comme T0 est un sous-espace vectoriel de E , il est
stable par combinaisons linéaires, donc

V = Vect(N ) ≃ T0.

III.3.1. On a Fj =





1 1
(0)

↑1 ↑1
(0)



, où les deux

1 sont en positions (1, 1) et (1, j), et les deux ↑1 en
positions (j, 1) et (j, j), tous les autres coe"cients étant
nuls. On voit donc que F

2
j = 0.

III.3.2. Ainsi, Fj est nilpotente. Comme c’est aussi le
cas de E1,j et Ej,1, comme combinaison linéaire de ma-
trices nilpotentes, Gj → V .

III.3.3. Les Eij pour i ↘= j sont nilpotents et les Gk

sont dans V , donc F est une famille de V .
Constatons que Gk = E1,1 ↑ Ek,k. Soit une combinai-

son linéaire nulle de la famille F ,
∑

i ↗=j

ϑij Ei,j +
n∑

k=2
ϑk Gk = On.

Les coe"cients non diagonaux de cette matrice sont
exactement les ϑij et sont donc nuls. Les coe"cients
diagonaux, sauf le premier, sont exactement les ↑ϑk et
sont donc nuls. Ainsi, tous les coe"cients de cette com-
binaison linéaire sont nuls, donc F est libre dans V .

III.3.4. Cette famille contient n
2 ↑ 1 vecteurs, donc

dim(V ) ↫ n
2 ↑ 1 = dim(T0). Or V ≃ T0, donc

V = T0.

IV.1. Par définition, T1 = Vect((Ei,j)1↭i<j↭n) donc

dim(T1) = card{(i, j) | 1 ↭ i < j ↭ n} = n(n ↑ 1)
2 .

IV.2. C’est clair, d’après la question I.9.

IV.3. Comme dim(Sn(R)) = n(n + 1)
2 , on a déjà

dim(E ) = dim(Sn(R)) + dim(T1).

De plus, si une matrice est dans Sn(R) ⇐ T1, ses coe"-
cients sous la diagonale incluse sont nuls car elle est dans
T1, et alors ses coe"cients au-dessus de la diagonale
sont nuls car elle est dans Sn(R) : c’est donc On et
Sn(R) ⇐ T1 = {On}. Alors

E = Sn(R) ⇒ T1.

IV.4.1. Considérons la somme Sn(R) + F ≃ E . D’une
part, dim(Sn + F ) ↭ n

2. D’autre part,

dim(Sn + F ) = dim(Sn(R))+d↑ dim(Sn(R)⇐F )

>
n(n + 1)

2 + n(n ↑ 1)
2 ↑ dim(Sn(R) ⇐ F )

= n
2 ↑ dim(Sn(R) ⇐ F ).

D’où l’on tire que

dim(Sn(R) ⇐ F ) > n
2 ↑ n

2 = 0.

Cela signifie qu’il existe des matrices non nulles à
la fois dans Sn(R) et dans F , donc dans N , ce qui
contredit la question I.11. Donc l’hypothèse sur d est à
rejeter, et l’on a d ↭ n(n ↑ 1)

2 .
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IV.4.2. On a donc un majorant de la dimension d’un
sous-espace vectoriel de N . Et ce majorant est atteint
par T1 qui est inclus dans N : c’est donc un maximum.

V.0 Comme E est de dimension finie, la norme que l’on
considère n’a pas d’importance. Nommons-la ↓ · ↓.

V.1. On a vu à la question I.8 que
N = {M → E | M

n = On}.

Considérons donc l’application
ϖ : E ⇑ E , M ⇓⇑ M

n
.

Comme les coe"cients de M
n sont des polynômes en

les coe"cients de M , ils en dépendent continument, et
comme E est de dimension finie, ϖ est continue sur E .

Si l’on considère une suite (Ak) d’éléments de N
qui converge vers une matrice A de E , ils vérifient tous
A

n
k = On, ou encore ϖ(Ak) = On. Par continuité de ϖ,

à la limite, ϖ(A) = On, donc A → N .
Ainsi, N contient les limites de toutes ses suites

convergentes, ce qui signifie que N est fermé.

V.2. D’après la question IV.2, il existe T → T1 et
P → GLn(R) telles que A = P T P

↔1. Alors
M = P (In + ϱT )P

↔1
.

Or, T est strictement triangulaire supérieure, donc
In + ϱ T est triangulaire supérieure avec des 1 sur la
diagonale. Alors,

det(M) = det(In + ϱT ) = 1.

Soit r > 0. Considérons la boule ouverte B(A, r) et
la matrice M = A + ςIn, où ς > 0 est fixé. D’après ce
qui précède,

det(M) = ς
n det

(
In + 1

ς
A


= ς

n
> 0,

donc rg(M) = n. D’autre part,
↓M ↑ A↓ = ↓ςIn↓ = ς↓In↓.

En choisissant ς = r

2↓In↓ par exemple, on voit que

↓M ↑ A↓ = r

2 < r, donc M → B(A, r).
Ainsi, toute boule ouverte centrée en A ren-
contre GLn(R).

Mais GLn(R) est inclus dans le complémentaire de N ,
donc A n’est pas un point intérieur de N .

Ainsi, l’intérieur de N est vide.

V.3. Si l’intérieur de F n’est pas vide, il existe A → F

et r > 0 tel que B(A, r) ≃ F . Alors, B(On, r) ≃ F .
En e!et, si M → B(On, r), ↓M↓ < r. Or
↓M↓ = ↓M + A ↑ A↓ < r, donc M + A → B(A, r) donc
M +A → F . Alors, puisque A → F , M = M +A↑A → F .

Soit P → E ⊋{On}. Alors Q = r
2↘P ↘ P → B(On, r) car

↓Q↓ = r
2 < r, donc Q → F et P → F , car il est colinéaire

à Q.
Finalement, F = E .

Par contraposition, tout sous-espace vectoriel de E
distinct de E est d’intérieur vide. En particulier, d’après
la partie III, V = T0 ⫅̸ E , donc V est d’intérieur vide.
Alors, puisqu’il est inclus dans V ,

N est aussi d’intérieur vide.

VI.1. On sait que dans R[X],

(1 + X)
n↔1∑

k=0
(↑X)k = 1 ↑ (↑X)n

.

En évaluant cette égalité en la matrice ϱA, sachant que
A

n = On,

(In + ϱA)
n↔1∑

k=0
(↑ϱA)k = In ↑ (↑ϱA)n = In.

D’où l’on tire que M
↔1 =

n↔1∑

k=0
(↑ϱA)k.

VI.2. D’après le cours,

⇔x → ]↑1, 1[, (1 + x)1/2 =
+≃∑

k=0

(
1/2
k

)
x

k
.

IV.3. D’après le produit de Cauchy, on en déduit que
pour tout x → ]↑1, 1[,

1 + x =
+≃∑

k=0

(
1/2
k

)
x

k

2

=
+≃∑

k=0


k∑

j=0

(
1/2
j

)(
1/2

k ↑ j

)
x

k
.

Il s’ensuit que
 1/2

0
2 = 1, 2

 1/2
0

 1/2
1


= 1 et pour tout

k ↫ 2,
k∑

j=0

(
1/2
j

)(
1/2

k ↑ j

)
= 0.

Alors, posons

B =
n↔1∑

k=0

(
1/2
k

)
(ϱA)k

.

En développant et en tenant compte de ces identités,

B
2 =

n↔1∑

k=0


k∑

j=0

(
1/2
j

)(
1/2

k ↑ j

)
(ϱA)k

= In + ϱA = M.

Normalement, la somme devrait aller jusqu’à l’indice
k = 2(n ↑ 1), mais les puissances de A supérieures à n

sont nulles.
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