04 02 26

Corrigé du vingt-troisieme devoir a la maison

QC1. D’apres le cours,

|dima§0 =n? et (E;;)1<ij<n est une base de &.

QC2. D’apres le cours, | E;;jEy¢ =0 E; g, en utilisant
le symbole de Kronecker.

QC3. Le polynéme caractéristique d’une matrice carrée
en est un polynéme annulateur.

QC4. Une matrice de ., (K) est trigonalisable si et
seulement si son polynéme caractéristique est scindé
sur K.

I.1. | Non. En effet, A est nilpotente donc il existe p € N*
tel que AP = O,,, d’out det(AP) = 0 et det(A) = 0.

I1.2. Comme AP = O,, le polynéme X? est annulateur
de A. Parmi ses racines figurent les valeurs propres de A,
donc la seule possible est 0. Comme A n’est pas inver-
sible, 0 est effectivement valeur propre de A.

Donc | Sp(A) = {0} et [ xa = X™.

I.3. Alors, | A est diagonalisable si et seulement si le

polynome []ycg,4)(X — A) est annulateur, c’est-a-dire
si X est annulateur, c’est-a-dire A = O,,.

I.4. | Oui, car toute matrice de Vect(A) s’écrit A A, ol
A € R, donc (AA)P = AP AP = O,, et A A est nilpotente.

I.5. | Oui, car (AT)? = (AP)T = O,,.

I.6. |Si M est semblable & A, elle représente le méme
endomorphisme que A. Donc MP représente le méme
endomorphisme que AP = O,, donc MP = O, et
M est nilpotente.

I.7. Puisque x4 = X" et d’apres le théoreme de Cayley-

Hamilton, | A™ = O,.
1.8. | Oui!

Commentaire. Comme le suggere 1’énoncé, dorénavant,
nous utiliserons implicitement ce résultat.

1.9. | Oui, car x4 est scindé sur R.

Comme A n’est pas inversible, rg(A) < n — 1. En
outre, en prenant

0 1 (0)
A= )
1
(0) 0

clairement x4 = X™ donc A™ = O,,, A est nilpotente et
de rang n — 1.

| Le rang maximal d’une matrice nilpotente est n — 1.

1.10.1. Comme B C € 4/, (BC)" = O,, donc
C(BC)" B = O,, cest-a-dire (C B)"™! = O, et

CBe.t.

1.10.2. Comme A et B commutent,
(AB)" = A" B" = O,.
Et d’aprées le binome de Newton,

2n
(A+BPr=3" (2:) VL

k=0
—(2n k p2n—k . 20\ g pon—k

=Y L ABTE > L )AL
k=0 k=n+1

Dans la premiere somme 2n — k > n donc B2k = O, ;
dans la seconde, & > n donc AF = 0O,. Alors
(A+ B)*" = O,,.

| AB et A+ B sont nilpotentes.

I.11. Une matrice symétrique réelle est diagonalisable.
Si elle est nilpotente, elle est nulle d’apres la question 3.

Seule la matrice nulle est a la fois symétrique réelle
et nilpotente.

I.12.1. Comme AT = —A, (42)7T = (AT)?2 = A2
donc A? est symétrique réelle, et nilpotente car
(A%)" = A%" = O,,. D’aprés la question précédente,

A% = 0,.

I.12.2. Alors  Tr(A?%) = 0. Mais aussi,
Tr(A?) = —Tr(ATA) = —||4||?, ot l'on a reconnu
la norme euclidienne usuelle dans &. Donc ||A|| = 0 et

A= 0O,.

Seule la matrice nulle est a la fois antisymétrique et
nilpotente.

I1.1.1. Comme M est triangulaire supérieure, ses va-
leurs propres figurent sur sa diagonale, donc

Sp(M) = {0}.

En outre, clairement rg(M) = n — 1 donc
dim Eo(M) = 1. Enfin, puisque la premiére colonne
de M est nulle,

Eo(M) =R
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I1.1.2. Clairement, S est symétrique non nulle, donc
d’apres la question 1.11,|.S ¢ 4.

Notons J la matrice remplie de 1, de sorte que
S = J—1I,,. Puisque J et I,, commutent et que J% =nJ,

S?=J2—2J+1,=(n—-2)J+1,

=n=2)(S+1,)+I,=n—-2)S+(n—-1)1I,.

Ainsi, | S% € Vect(S, I,).

De plus, le polynéme X? — (n —2) X — (n — 1) est
annulateur de S, donc parmi ses racines, —1 et n — 1,
figurent les valeurs propres de S. Mais S est diagonali-

sable et n’est pas colinéaire a I,,, donc elle a au moins
deux valeurs propres. Ainsi,

|Sp(S) = {-1,n —1}.

T

Enfin, si X = ,SX=-X < YU 2,=0,

Tn
donc E_;(S) est Phyperplan d’équation Y ;- x; = 0; et
puisque les sous-espaces propres de S sont orthogonaux,
car S est symétrique réelle, E,,_1(S) est engendré par le
vecteur colonne rempli de 1, qui est normal & ’hyperplan
précédent.

I1.1.3. | Non, car l'on vient d’exhiber deux matrices

nilpotentes, M et M T, dont la somme, S, n’est pas
nilpotente.

I1.2.1. D’apres le théoreme de Cayley-Hamilton,
M? — Tr(M)M + det(M) I, = 0. Et comme rg(M) = 1,
det(M) =0 et | M?=Tr(M)M.

Si Tr(M) # 0, alors le polynéme X (X — Tr(M))
annulateur de M est scindé & racines simples, donc
M est diagonalisable.

Si Tr(M) = 0, alors M? = 0 et M est nilpotente.

1

I1.2.2. La matrice | A = (1

:1 ) convient.

I1.2.3. Soit A nilpotente : A2 = O, donc Tr(A) =0 et
det(A) = 0. Alors elle s’écrit

a c
A= (b —a
avec a® — be = 0. Réciproquement, si A a cette forme,
Tr(A) = det(A) =0 et A% = Os.
L’ensemble des matrices nilpotentes de taille 2 est

(3 o) lo=re)

ITI.1. Comme la trace est une forme linéaire non nulle,
To = Ker(Tr) est un hyperplan de &, donc

|dim(T0) =n%—1.

IT1.2. Comme on I’a vu, toute matrice A de .4 vérifie
x4 = X", donc Tr(A) = 0, car c’est, au signe pres, le
coefficient de X"~ ! dans x 4. Ainsi,

N CTy.

Et comme T} est un sous-espace vectoriel de &, il est
stable par combinaisons linéaires, donc

|V = Vect(A) C Top.

2

4

1 1
II1.3.1. On a F; =

1 1 , ol les deux
(0)

1 sont en positions (1,1) et (1,5), et les deux —1 en
positions (4, 1) et (j,7), tous les autres coefficients étant

nuls. On voit donc que | F = 0.

II1.3.2. Ainsi, F; est nilpotente. Comme c’est aussi le
cas de F ; et 1, comme combinaison linéaire de ma-

trices nilpotentes, | G; € V.

IIL.3.3. Les E;; pour ¢ # j sont nilpotents et les Gj,
sont dans V', donc % est une famille de V.

Constatons que G, = F1,; — F} ;. Soit une combinai-
son linéaire nulle de la famille %,

n
Z )\ij E; ;i + Z A G = O,.
i#j k=2

Les coefficients non diagonaux de cette matrice sont
exactement les A;; et sont donc nuls. Les coefficients
diagonaux, sauf le premier, sont exactement les —\; et
sont donc nuls. Ainsi, tous les coefficients de cette com-
binaison linéaire sont nuls, donc | & est libre dans V.

II1.3.4. Cette famille contient n? — 1 vecteurs, donc
dim(V) > n? — 1 = dim(Typ). Or V C Tp, donc

V ="1To.

IV.1. Par définition, 77 = Vect((E; ;)1<i<j<n) donc
(n-1)

dim(71) = card{(i,j) | 1 <i < j<n} =

2
IV.2. | C’est clair, d’apres la question 1.9.
1
IV.3. Comme dim(%, (R)) = @ on a déja

dim(&) = dim(-#,(R)) + dim (7).

De plus, si une matrice est dans .7, (R) N .71, ses coeffi-
cients sous la diagonale incluse sont nuls car elle est dans
J1, et alors ses coefficients au-dessus de la diagonale
sont nuls car elle est dans .7, (R) : ¢’est donc O, et
In(R)N 7 ={0,}. Alors

|6 = #u(R) & T

IV.4.1. Considérons la somme .7, (R) + F C &. D’une
part, dim(.%, + F) < n?. D’autre part,
dim (., + F) = dim(%,(R)) +d — dim (.7, (R)NF)
nn+1) n(m-—1)
- 2 + 2
=n? — dim(.7,(R) N F).

— dim(, (R) N F)

D’ott 'on tire que

| dim(7(R) N F) > n? —n? =0.

Cela signifie qu’il existe des matrices non nulles a
la fois dans .7, (R) et dans F, donc dans .47, ce qui
contredit la question 1.11. Donc ’hypothese sur d est a

-1
rejeter, et 'on a | d < %
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IV.4.2. On a donc un majorant de la dimension d’un
sous-espace vectoriel de 4. Et ce majorant est atteint
par 71 qui est inclus dans .4 : ¢’est donc un maximum.

V.0 Comme & est de dimension finie, la norme que 1’on
considére n’a pas d’importance. Nommons-la || - ||.

V.1. On a vu a la question 1.8 que
N ={Mec&|M"=0,}.
Considérons donc 'application
Q:8— 8, M— M".

Comme les coefficients de M™ sont des polyndémes en
les coefficients de M, ils en dépendent continument, et
comme & est de dimension finie, @ est continue sur &.

Si 'on considére une suite (Ay) d’éléments de A"
qui converge vers une matrice A de &, ils vérifient tous
A = Oy, ou encore $(Ag) = O,,. Par continuité de &,
a la limite, #(A) = O,,, donc A € A,

Ainsi, 4/ contient les limites de toutes ses suites

convergentes, ce qui signifie que | A" est fermé.

V.2. D’apres la question IV.2, il existe T € 7 et
P € GL,(R) telles que A = PT P~!. Alors
M=P(I,+aT)P ™ .

Or, T est strictement triangulaire supérieure, donc
I, + aT est triangulaire supérieure avec des 1 sur la
diagonale. Alors,

det(M) = det(I, + aT) = 1.
Soit 7 > 0. Considérons la boule ouverte B(A,r) et

la matrice M = A+ e, ou e > 0 est fixé. D’apres ce
qui précede,

1
det(M) = " det (In + gA) =" >0,
donc rg(M) = n. D’autre part,
[M — Al = [le In|l = || In]].

En choisissant ¢ = par exemple, on voit que

_r
TP
|M— Al = <" donc M € B(A,r).

Ainsi, toute boule ouverte centrée en A ren-
contre GL,, (R).

Mais GL,, (R) est inclus dans le complémentaire de .4,
donc A n’est pas un point intérieur de .A4".

| Ainsi, Uintérieur de 4" est vide.

V.3. | Si l'intérieur de F' n’est pas vide, il existe A € F
et r > 0 tel que B(A,r) C F. Alors, B(O,,r) C F.
En effet, si M € B(O,,r), |[M|| < r. Or
|M]|| = ||M+A—A| <r,donc M +A € B(A,r) donc
M+Ae€F. Alors, puisque Aec F,M =M+A—A€F.

Soit P € &~ {0,}. Alors Q = ﬁP € B(O,,r) car
QI =5 <r,donc Q € F et P e F,car il est colinéaire
a Q.

Finalement, ' = &.

3

4

Par contraposition, tout sous-espace vectoriel de &
distinct de & est d’intérieur vide. En particulier, d’apres
la partie III, V =Ty & &, donc V est d’intérieur vide.
Alors, puisqu’il est inclus dans V|

|JV est aussi d’intérieur vide.

VI.1. On sait que dans R[X],

n—1

1+X)> (X)) =1-(-x)".

k=0

En évaluant cette égalité en la matrice av A, sachant que
A" = On7

n—1
(In+aA)Y (—aA)f =1, - (—aA)" =1,.
k=0
n—1
D’ott l'on tire que | Mt = Z(—aA)k.
k=0
VI1.2. D’apres le cours,
—+oo
1/2
vz el-1,1], (1+2)/2= ( )xk.
-1k e =3 (5

IV.3. D’apres le produit de Cauchy, on en déduit que
pour tout z € |—1,1],

(7))

11 s’ensuit que (1(/)2)2 =1,2(

kE>2,
k
()

J

1/2) (1{2) =1 et pour tout

Alors, posons
n—1
1/2 K
B= aA)".
% ()

En développant et en tenant compte de ces identités,

=S (2 (F)(5)enr
—I,+aA=DM.

Normalement, la somme devrait aller jusqu’a l'indice
k = 2(n — 1), mais les puissances de A supérieures & n
sont nulles.



