
11 02 – 11 03 26

Vingt-septième devoir à la maison

[CS22]
4 heures

Calculatrice autorisée

Objectif
Ce problème propose d’étudier quelques propriétés

d’un opérateur intégral U défini sur un espace préhil-
bertien réel E. Cet espace et son produit scalaire sont
introduits dans la partie II et l’opérateur U est étudié
dans la partie III. Dans la partie IV, on s’intéresse à
l’étude d’une famille d’équations différentielles à un
paramètre pour lesquelles on recherche des solutions
développables en séries entières. Enfin, la partie V
fait le lien entre les vecteurs propres de l’endomor-
phisme U et les solutions des équations différentielles
trouvées dans de la partie IV.

Liens entre les différentes parties

— Les parties I et II sont très largement indépen-
dantes à l’exception de la définition de la fonc-
tion kx.

— La partie III utilise les résultats de la partie II
ainsi que la condition d’appartenance à E établie
dans la partie I.

— La partie IV fait ponctuellement appel à l’espace
E défini et étudié dans les parties I et II. Elle est
indépendante de la partie III.

— La partie V utilise les résultats des parties III et
IV ainsi que le résultat de la question 3.

Notations
On note E l’ensemble des fonctions f continues

de R∗
+ dans R telles que l’intégrale

∫ +∞

0
f2(t) e

−t

t
dt

converge.
Pour α ∈ R∗

+, on note pα la fonction∣∣∣∣ R∗
+ −→ R
t 7−→ tα.

I Préliminaires : étude de quel-
ques éléments de E

I.A – Des fonctions de E utiles pour la suite

Q1. Montrer que, pour tout α ∈ R∗
+, pα appartient

à E.

Q2. Soit P une fonction polynomiale non identique-
ment nulle à coefficients réels. Montrer que la res-
triction de P à R∗

+ appartient à E si et seulement si
P (0) = 0.

Q3. Soient a et b deux nombres réels. Montrer que
la fonction ∣∣∣∣ R∗

+ −→ R
t 7−→ aet + b

appartient à E si et seulement si a = b = 0.

Q4. Montrer que, pour tout x ∈ R∗
+, la fonction∣∣∣∣∣∣

R∗
+ −→ R

t 7−→ (et − 1)2 e
−t

t

est intégrable sur ]0, x].

Q5. Pour tout x ∈ R∗
+ et tout t ∈ R∗

+, on note
kx(t) = emin(x,t) − 1 où min(x, t) désigne le plus pe-
tit des réels x et t. Représenter graphiquement la
fonction kx. Montrer que kx appartient à E.

I.B – Une condition suffisante d’appartenance à E
Dans cette sous-partie, on suppose que f est une

fonction de R∗
+ dans R de classe C1 vérifiant{

lim
x→0

f(x) = 0,

∃C > 0; ∀x > 0, |f(x)| ⩽ C
√
x.

Q6. Pour x ∈ R∗
+, on pose

Φ(x) = 4
√
xex/2

1 + x
−

∫ x

0

et/2
√
t

dt.

Montrer que Φ est de classe C1 sur R∗
+, que

lim
x→0

Φ(x) = 0 et que, pour tout x > 0, Φ′(x) ⩾ 0.
En déduire que Φ(x) ⩾ 0 pour tout x > 0.

Q7. Montrer que, pour tout x > 0,

|f(x)| ⩽ 4C
√
xex/2

1 + x
.

Q8. En déduire que f ∈ E.

II Structure préhilbertienne de
E

Q9. Montrer que, si f et g sont deux fonctions de E,

alors l’intégrale
∫ +∞

0
f(t)g(t) e

−t

t
dt est absolument

convergente.

Q10. En déduire que E est un sous-espace vectoriel
de l’espace vectoriel C(R∗

+,R) des fonctions continues
sur R∗

+ à valeurs dans R.

Pour toutes fonctions f ∈ E et g ∈ E, on pose,

⟨f |g ⟩ =
∫ +∞

0
f(t)g(t) e

−t

t
dt.
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Q11. Montrer que l’on définit ainsi un produit sca-
laire sur E.

La norme ∥·∥ associée à ce produit scalaire est
donc définie pour toute fonction f ∈ E par

∥f∥ =
(∫ +∞

0
f2(t) e

−t

t
dt

)1/2

.

Q12. Montrer que lim
x→0

∥kx∥ = 0. On rappelle que,
pour tout x > 0, kx(t) = emin(x,t) − 1.

Q13. Montrer que, pour tout k ∈ N,∫ +∞

0
tk e−t dt = k!

Q14. On rappelle que les fonctions pα ont été défi-
nies dans les notations en tête de sujet. La famille
(pn)n∈N∗ est-elle une famille orthogonale de E ?

III Un opérateur sur E

À chaque fonction f ∈ E, on associe la fonction
U(f) définie pour tout x > 0 par

U(f)(x) = ⟨kx |f ⟩ =
∫ +∞

0
(emin(x,t) − 1)f(t) e

−t

t
dt.

III.A –

Q15. À l’aide de l’inégalité de Cauchy-Schwarz, mon-
trer que pour toute fonction f ∈ E,

lim
x→0
x>0

U(f)(x) = 0.

Q16. Montrer que pour toute fonction f ∈ E et pour
tout x > 0,

U(f)(x) =
∫ x

0
(1−e−t) f(t)

t
dt+(ex−1)

∫ +∞

x

f(t) e
−t

t
dt.

Q17. Soit f ∈ E. Montrer que U(f) est de classe C1

sur R∗
+ et vérifie, pour tout x > 0,

(U(f))′(x) = ex

∫ +∞

x

f(t) e
−t

t
dt.

Dans la suite, pour alléger les notations, la dérivée
de la fonction U(f) est notée U(f)′.

Q18. Soit f ∈ E. Montrer que U(f) est de classe C2

sur R∗
+ et que la fonction U(f) est solution sur R∗

+
de l’équation différentielle

(III.1) y′′ − y′ = −f(x)
x

.

Q19. Montrer que pour tout f ∈ E et pour tout
x > 0,

|U(f)′(x)| ⩽ ex ∥f∥
(∫ +∞

x

e−t

t
dt

)1/2

⩽ ∥f∥ e
x/2
√
x
.

Q20. Déduire de ce qui précède que U est un endo-
morphisme de E et que, pour tout f ∈ E et tout
x > 0,

|U(f)(x)| ⩽ 4∥f∥
√
xex/2

1 + x
.

Q21. En déduire que

∥U(f)∥ ⩽ 4∥f∥.

Q22. Montrer que U est injectif.

Q23. L’endomorphisme U est-il surjectif ?

III.B – On fixe deux fonctions f et g de E. Pour
x > 0, on pose

F (x) = −U(f)′(x)e−x.

Q24. Vérifier que F est une primitive de
x 7→ f(x) e

−x

x
sur l’intervalle R∗

+.

Q25. Montrer que pour tout x > 0,

|F (x)U(g)(x)| ⩽ 4 ∥f∥∥g∥
1 + x

.

Q26. Montrer que pour tout x ∈ ]0, 1],

|F (x)| ⩽ ∥f∥(e−1 − ln(x))1/2.

On pourra utiliser la question 19.

Q27. Montrer l’existence et calculer les valeurs des
limites en 0 et en +∞ de la fonction t 7→ F (t)U(g)(t).

Q28. Montrer que

⟨f |U(g)⟩ =
∫ +∞

0
U(f)′(t)U(g)′(t)e−t dt.

Q29. En déduire que ⟨f |U(g)⟩ = ⟨U(f) |g ⟩.

IV Solutions d’une équation dif-
férentielle développables en
série entière

Pour p ∈ R∗ on note (Ep) l’équation différentielle
sur R∗

+

(Ep) x(y′′ − y′) + py = 0.

Q30. Soient p ∈ R∗ et (an)n∈N une suite de nombres
réels. On suppose que la série entière

∑
n⩾0

anx
n a un

rayon de convergence infini. Montrer que la fonction

f : x 7→
+∞∑
n=0

anx
n est solution de (Ep) si et seulement

si {
a0 = 0,
n(n+ 1)an+1 = (n− p)an, ∀n ∈ N∗.
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IV.A – Recherche de solutions polynomiales

Q31. Montrer que (Ep) possède des solutions poly-
nomiales non identiquement nulles si et seulement si
p ∈ N∗. Montrer qu’alors, les solutions polynomiales
non nulles de (Ep) sont de degré p et appartiennent
à l’espace vectoriel E.

On ne demande pas de déterminer explicitement les
solutions polynomiales lorsqu’elles existent.

Dans la suite de cette sous-partie, on fixe p ∈ N∗ et
on considère un polynôme P ∈ R[X] tel que la fonc-
tion polynomiale x 7→ P (x) soit solution de l’équa-
tion (Ep). L’objectif est de déterminer une expression
simple de P en fonction du paramètre p.

Pour tout x ∈ R, on note h(x) = e−xP (x).

Q32. Montrer que la fonction h est solution de l’équa-
tion différentielle x(y′′ + y′) + py = 0 sur R∗

+.

Q33. Justifier que la fonction h est développable en
série entière sur R.

On note (bn)n∈N la suite des coefficients du dé-
veloppement en série entière de h. Ainsi, pour tout

x ∈ R, h(x) =
+∞∑
n=0

bn x
n. On peut montrer, de la

même façon qu’à la question 30 (cette démonstration
n’est pas demandée), que ces coefficients vérifient{

b0 = 0,
n(n+ 1)bn+1 = −(n+ p)bn, ∀n ∈ N∗.

Q34. Établir que, pour tout n ∈ N∗,

bn = (−1)n−1 (n+ p− 1)!
p!n! (n− 1)! b1.

Q35. On pose gp(x) = xp−1 e−x. Justifier que g(p)
p

est développable en série entière et déduire de la
question 34 que, pour tout x ∈ R,

P (x) = Cxex g(p)
p (x)

où C est une constante réelle dont on précisera l’ex-
pression en fonction de b1 et de p.

IV.B – Solutions développables en séries en-
tières non polynomiales

Dans toute cette sous-partie, on fixe un réel p non
nul et on suppose que p /∈ N∗.

Q36. Justifier l’existence de suites (an)n∈N ∈ RN

non identiquement nulles telles que la série entière∑
n⩾0

anx
n ait un rayon de convergence infini et telles

que la fonction x 7→
+∞∑
n=0

anx
n soit solution de (Ep).

On fixe une telle série entière et on pose pour
x > 0,

f(x) =
+∞∑
n=0

anx
n.

Q37. Montrer qu’il existe un entier naturel q > p tel
que, pour tout entier n ⩾ q,

|an+1| ⩾ |an|
2(n+ 1) .

Q38. En déduire que, pour tout entier n ⩾ q,

|an| ⩾ q! |aq|
2n−q n! .

Q39. Montrer que la fonction

ψ

∣∣∣∣∣∣∣
R∗

+ −→ R

x 7−→
+∞∑
n=0

|an|xn

n’est pas un élément de E.

Q40. En déduire enfin que la fonction f n’est pas un
élément de E.

V Éléments propres de U

Q41. Le nombre réel 0 est-il valeur propre de U ?

Q42. Soit λ ∈ R∗
+. On suppose que λ est valeur

propre de U . Soit f un vecteur propre associé. Mon-
trer que f est solution de l’équation différentielle
(E1/λ).

On suppose que f est développable en série en-
tière sur R∗

+, c’est-à-dire qu’il existe une série entière∑
n⩾0

anx
n de rayon de convergence infini telle que

∀x ∈ R∗
+, f(x) =

+∞∑
n=0

anx
n.

Q43. Montrer que les seules valeurs propres possibles
de U sont de la forme λ = 1/p avec p ∈ N∗.

Q44. Soit P une solution polynomiale non nulle de
(Ep). Démontrer que la fonction pU(P ) − P vérifie
sur R∗

+ l’équation différentielle y′′ − y′ = 0.

Q45. Montrer que P est un vecteur propre de U pour
la valeur propre 1/p.

Q46. Pour tout entier p ∈ N∗ et tout x > 0, on pose
Pp(x) = x ex g

(p)
p (x), où gp(x) = xp−1 e−x. On rap-

pelle que Pp est une fonction polynomiale de degré
p et que Pp ∈ E. Montrer que les polynômes Pp sont
deux à deux orthogonaux dans E.

• • • FIN • • •
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