Quatrième devoir à la maison

Premier exercice [E3A09]

Soit α et β deux réels, avec $\alpha < \beta$. Soit a et b deux applications de $[\alpha, \beta]$ vers \mathbb{R} , continues sur $[\alpha, \beta]$. On note (E) l'équation différentielle suivante :

$$y''(t) + a(t)y'(t) + b(t)y(t) = 0.$$

Dans cet exercice on appelle solution de (E) toute application de $[\alpha, \beta]$ vers \mathbb{R} de classe \mathscr{C}^2 vérifiant (E) sur $[\alpha, \beta]$.

Soit f une solution de (E) sur $[\alpha, \beta]$. On suppose que f admet une infinité de zéros dans $[\alpha, \beta]$. Le but de l'exercice est d'établir que f est l'application nulle sur $[\alpha, \beta]$.

Pour cela on considère une suite $(x_n)_{n\geqslant 0}$ de zéros de f, deux à deux distincts, appartenant à $[\alpha, \beta]$.

- **1º** Dans cette question on suppose que la suite $(x_n)_{n\geqslant 0}$ converge vers un réel x.
 - a) Prouver que x appartient à $[\alpha, \beta]$. En déduire que f(x) = 0.
 - **b)** Montrer que pour tout entier naturel n, il existe au moins un zéro de f', noté y_n , strictement compris entre x_n et x_{n+1} .
 - c) Calculer f'(x).
 - d) Conclure.
- **2º** Prouver que f est aussi l'application nulle sur $[\alpha, \beta]$ lorsque la suite $(x_n)_{n\geqslant 0}$ n'est pas convergente.
- ${\bf 3^o}$ Prouver à l'aide d'un contre-exemple que le résultat établi dans cet exercice est faux si l'on remplace $[\alpha,\beta]$ par $\mathbb R.$

Deuxième exercice [E3A17]

On s'intéresse à l'équation différentielle,

$$xy'' + y' - (x+1)y = 1,$$

que l'on souhaite résoudre sur l'intervalle $I = \mathbb{R}_+^*$.

- 1. Pour $x \in I$, soit $r(x) = \frac{e^{-x}}{x}$.
 - a) Justifier que la fonction r admet une unique primitive R s'annulant en 1, dont on donnera une expression intégrale que l'on ne cherchera pas à calculer.
 - **b)** Montrer que la fonction R est majorée sur l'intervalle $[1, +\infty[$.

En déduire qu'elle admet en $+\infty$ une limite, que l'on nommera $\ell.$

- c) Montrer que la fonction R réalise une bijection de I dans un intervalle que l'on précisera.
- **2.** On note:

$$S = \{ y \in C^2(I, \mathbb{R}) / \\ \forall x > 0, \ xy''(x) + y'(x) - (x+1)y(x) = 1 \}.$$

a) Pour tout $y \in C^2(I, \mathbb{R})$, on pose $z(x) = e^{-x}y(x)$ pour tout x > 0.

Montrer que $y \in \mathcal{S}$ si et seulement si z vérifie :

$$(\star)$$
 $\forall x > 0, \ xz''(x) + (2x+1)z'(x) = e^{-x}.$

b) Déterminer les $Z \in C^1(I, \mathbb{R})$ telles que :

$$\forall x > 0, \ xZ'(x) + (2x+1)Z(x) = 0.$$

On utilisera r(2x).

c) Déterminer les $Z \in C^1(I, \mathbb{R})$ telles que :

$$\forall x > 0, \ xZ'(x) + (2x+1)Z(x) = e^{-x}.$$

On utilisera r(x).

- d) En déduire l'expression des fonctions $z \in C^2(I, \mathbb{R})$ vérifiant l'équation (\star) . On utilisera R(x) et R(2x).
- e) Donner alors l'expression de la solution générale $y \in \mathcal{S}$.
- **3. a)** Montrer qu'il existe un réel $\gamma > 0$ tel que $R(x) = \ln x + \gamma + o(1)$ quand $x \to 0$ avec x > 0.
 - b) En déduire les solutions $y \in \mathcal{S}$ ayant une limite finie en 0.