Corrigé du quatrième devoir à la maison

Premier exercice

1.a. Pour tout $n \in \mathbb{N}$, $\alpha \leq x_n \leq \beta$, donc en passant à la limite, $|\alpha \leq x \leq \beta$.

Comme f est continue, sachant que pour tout $n \in \mathbb{N}$, $f(x_n) = 0$, en passant à la limite, |f(x)| = 0.

1.b. Soit $n \in \mathbb{N}$. D'après le théorème de Rolle, puisque f est continue entre x_n et x_{n+1} inclus, et dérivable entre x_n et x_{n+1} exclus, et que $f(x_n) = f(x_{n+1}) = 0$,

il existe y_n strictement entre x_n et x_{n+1} tels que $f'(y_n) = 0$.

1.c. Puisque $\lim x_n = \lim x_{n+1} = x$, d'après le théorème d'encadrement, la suite (y_n) converge, vers x. Et comme f' est continue sur $[\alpha, \beta]$ et que pour tout $n \in \mathbb{N}$, $f'(y_n) = 0$, à la limite,

$$f'(x) = 0.$$

- **1.d.** Ainsi, f est solution du problème de Cauchy défini par (E) et les conditions f(x) = f'(x) = 0. D'après le théorème de Cauchy-Lipschitz, il n'y a qu'une solution à ce problème. Or, la fonction nulle en est une évidente, | donc f est nulle.
- 2. Dans le cas général, (x_n) est une suite bornée de réels. D'après le théorème de Bolzano-Weierstrass, on peut en extraire une sous-suite convergente et l'on se ramène au cas précédent.

Commentaire. Ledit théorème de Bolzano-Weierstrass est hors-programme en PSI. Cela aura surement échappé au concepteur du sujet.

3. La fonction cosinus (par exemple) est solution sur \mathbb{R} de l'équation différentielle y'' + y = 0, et elle s'annule une infinité de fois.

Deuxième exercice

- **1.a.** D'après le théorème fondamental de l'intégration, comme $1 \in I$, la fonction r, qui est continue sur I, y admet une unique primitive R qui s'annule en 1. C'est la fonction $R: x \mapsto \int_1^x r(t) \, \mathrm{d}t$.
- **1.b.** Pour tout $t \in [1, +\infty[$, $1/t \le 1$ donc $r(t) \le e^{-t}$, donc pour tout $x \in [1, +\infty[$, par croissance de l'intégrale,

$$R(x) \le \int_1^x e^{-t} dt = e^{-1} - e^{-x} \le e^{-1},$$

car $e^{-x} \ge 0$. Ainsi, R est majorée sur $[1, +\infty[$.

De plus, comme primitive de r qui est continue, R est de classe \mathscr{C}^1 sur I et $R'=r\geqslant 0$, donc R croît sur I. Puisque R est croissante et majorée,

elle admet une limite finie ℓ en $+\infty$.

1.c. Comme r est strictement positive sur I, R y est strictement croissante. Comme elle y est continue, elle réalise une bijection de I sur son image R(I). On sait déjà que R tend vers ℓ en $+\infty$.

Étudions sa limite en 0. Considérons $x \in]0,1]$. D'une part,

$$R(x) = -\int_{x}^{1} r(t) dt.$$

D'autre part, pour tout $t \in [x, 1], r(t) \ge e^{-x}/t$, donc

$$R(x) \leqslant -\int_{x}^{1} \frac{e^{-x}}{t} dt = e^{-x} \ln x \xrightarrow[x \to 0^{+}]{} -\infty.$$

Ainsi, R tend vers $-\infty$ en 0^+ . Finalement,

R réalise une bijection de I sur $]-\infty, \ell[$.

2.a. Soit $y \in C^2(I, \mathbb{R})$. Pour tout x > 0, posons $z(x) = e^{-x} y(x)$, ou encore $y(x) = e^x z(x)$. Bien-sûr, z est aussi de classe \mathscr{C}^2 sur I et pour tout x > 0,

$$y'(x) = e^{x} (z(x) + z'(x)),$$

$$y''(x) = e^{x} (z(x) + 2z'(x) + z''(x)).$$

Alors, pour tout x > 0,

$$\begin{aligned} & \underbrace{ x \, y''(x) + y'(x) - (x+1) \, y(x) = 1}_{} \\ & \iff x \, e^x \, (z(x) + 2 \, z'(x) + z''(x)) \\ & + e^x \, (z(x) + z'(x)) - (x+1) \, e^x \, z(x) = 1 \\ & \iff (\star) \, x \, z''(x) + (2 \, x + 1) \, z'(x) = e^{-x}. \end{aligned}$$

2.b. Les fonctions $x \mapsto x$ et $x \mapsto 2x+1$ sont continues sur I; et la première ne s'y annule pas. Alors d'après le cours, l'ensemble des solutions sur I de l'équation différentielle linéaire scalaire homogène d'ordre 1 proposée, est une droite vectorielle, engendrée par la fonction

$$x \mapsto \exp\left(-\int \frac{2x+1}{x} dx\right)$$
$$= \exp(-2x - \ln x) = \frac{e^{-2x}}{x} = 2r(2x).$$

On a choisi une primitive arbitraire, puisque n'importe laquelle convient.

Les fonctions $Z \in C^1(I,\mathbb{R})$ cherchées sont les fonctions définies par $Z(x) = 2\alpha r(2x)$, où $\alpha \in \mathbb{R}$.

Commentaire. Puisque α est arbitraire, 2α l'est aussi, et le (premier) 2 est inutile. Mais gardons-le pour la suite des calculs.

2.c. Cherchons une solution particulière de l'équation différentielle. Plutôt que d'entamer une variation de la constante, voyons si r serait solution « évidente », en nous inspirant de l'énoncé. Pour tout x>0,

$$r'(x) = -\frac{e^{-x}}{x} - \frac{e^{-x}}{x^2},$$

donc

$$xr'(x) + (2x+1)r(x)$$

$$= -e^{-x} - \frac{e^{-x}}{x} + (2x+1)\frac{e^{-x}}{x} = e^{-x},$$

ce que l'on soupçonnait. D'après le cours, les fonctions cherchées sont sommes de cette solution particulière et des solutions de l'équation homogène précédente.

Les fonctions $Z \in C^1(I,\mathbb{R})$ cherchées sont les fonctions définies par $Z(x) = r(x) + 2 \alpha r(2x)$, où $\alpha \in \mathbb{R}$.

2.d. Les solutions de (\star) sont telles que z' est l'une des fonctions précédentes. Il suffit donc d'intégrer, en n'oubliant pas la constante d'intégration.

Les solutions $z \in C^2(I, \mathbb{R})$ de (\star) sont les fonctions définies par $z(x) = R(x) + \alpha R(2x) + \beta$, où $(\alpha, \beta) \in \mathbb{R}^2$.

2.e. Alors, puisque $y(x) = e^x z(x)$,

les solutions $y \in \mathcal{S}$ sont les fonctions définies par $y(x) = e^x R(x) + \alpha e^x R(2x) + \beta e^x$, où $(\alpha, \beta) \in \mathbb{R}^2$.

Commentaire. Donc S est un plan affine, comme on s'y attendait d'après le cours.

3.a. Soit $x \in [0, 1]$. On a

$$R(x) - \ln x = \int_{1}^{x} \frac{e^{-t}}{t} dt - \int_{1}^{x} \frac{dt}{t} = \int_{x}^{1} \frac{1 - e^{-t}}{t} dt.$$

La fonction $t \mapsto (1 - e^{-t})/t$ est continue sur]0,1] et elle admet une limite finie en 0^+ , car pour t > 0 proche de 0,

$$\frac{1 - e^{-t}}{t} = \frac{1 - (1 - t + o(t))}{t} = 1 + o(1).$$

Alors, cette fonction est intégrable sur [0, 1], donc

$$\lim_{x \to 0^+} \int_x^1 \frac{1 - e^{-t}}{t} \, \mathrm{d}t = \int_0^1 \frac{1 - e^{-t}}{t} \, \mathrm{d}t = \gamma$$

existe et est finie.

Ainsi, il existe bien un réel $\gamma > 0$ tel que pour x > 0 proche de 0, $R(x) = \ln x + \gamma + o(1)$.

3.a. Soit $y \in \mathcal{S}$. Puisque $\lim_{x\to 0^+} e^x = 1$, la limite de y en 0 est celle de z, où $y(x) = e^x z(x)$.

D'après les questions 2.d et 3.a, on a

$$z(x) = \ln x + \gamma + o(1) + \alpha (\ln(2x) + \gamma + o(1)) + \beta$$

= $(1 + \alpha) \ln x + (1 + \alpha) \gamma + \alpha \ln 2 + \beta + o(1).$

Si $\alpha \neq -1$, $1 + \alpha \neq 0$ et z tend $\pm \infty$ en 0^+ . Donc on doit choisir $\alpha = -1$. Et dans ce cas, toujours pour x > 0 proche de 0,

$$z(x) = \beta - \ln 2 + \mathrm{o}(1) \xrightarrow[x \to 0^+]{} \beta - \ln 2 \in \mathbb{R}.$$

Ainsi, les solutions $y \in \mathcal{S}$ ayant une limite finie en 0^+ sont les fonctions définies par $y(x) = (R(x) - R(2x) + \beta)e^x$, où $\beta \in \mathbb{R}$.