Cinquième devoir à la maison

[CCP17]

Les questions étoilées sont réservées aux 5/2 et aux 3/2 aventureux.

Partie I - Lemmes de Riemann-Lebesgue

Dans ce qui suit, $\varphi: \mathbb{R} \to \mathbb{C}$ désigne une fonction continue 2π -périodique telle que :

$$\int_0^{2\pi} \varphi(t) \, \mathrm{d}t = 0.$$

Q1. Si $f:[0,2\pi]\to\mathbb{C}$ est une fonction de classe $\mathscr{C}^1,$ montrer que

$$\lim_{n \to +\infty} \int_0^{2\pi} f(t) \cos(nt) dt = 0.$$

Q2. Montrer que la primitive de φ s'annulant en 0 est 2π -périodique et bornée sur \mathbb{R} .

Soient a et b deux réels tels que a < b, déduire de ce qui précède que pour toute fonction f de classe \mathscr{C}^1 sur [a,b] et à valeurs dans $\mathbb C$ on a :

$$\lim_{n \to +\infty} \int_{a}^{b} f(t) \varphi(nt) dt = 0.$$

Q3.* Soient α et β deux réels tels que $\alpha < \beta$ et $h: [\alpha, \beta] \to \mathbb{C}$ une fonction continue. Soient ε un réel strictement positif et g une fonction de classe \mathscr{C}^1 sur $[\alpha, \beta]$ telle que $\sup_{[\alpha, \beta]} |h - g| \leqslant \varepsilon$, montrer qu'il existe une

constante M ne dépendant que de φ telle que :

$$\left| \int_{\alpha}^{\beta} h(t) \varphi(nt) \, \mathrm{d}t \right| \leqslant M \, \left| \beta - \alpha \right| \, \varepsilon + \left| \int_{\alpha}^{\beta} g(t) \varphi(nt) \, \mathrm{d}t \right|.$$

En déduire que pour tout intervalle [a,b] de $\mathbb R$ et toute fonction $f:[a,b]\to\mathbb C$ continue par morceaux :

$$\lim_{n \to +\infty} \int_a^b f(t) \varphi(nt) dt = 0.$$

On pourra admettre et utiliser le théorème de Weierstrass qui affirme que pour tout segment $[\alpha, \beta]$ avec $\alpha < \beta$ et toute fonction continue $f : [\alpha, \beta] \to \mathbb{C}$, il existe une suite $(P_k)_{k \in \mathbb{N}}$ de fonctions polynomiales qui converge uniformément vers f sur $[\alpha, \beta]$.

Q4. Soient a et b deux réels tels que a < b et $f:[a,b] \to \mathbb{C}$ une fonction continue par morceaux. Déduire de ce qui précède que :

$$\lim_{n \to +\infty} \int_a^b f(t) \sin^2(nt) dt = \frac{1}{2} \int_a^b f(t) dt.$$

Partie II - L'intégrale de Dirichlet

Soit $f: \mathbb{R}_+ \to \mathbb{C}$ une fonction continue telle que la fonction $F: x \mapsto \int_0^x f(t) dt$ soit bornée.

Q5. Montrer que, pour tout réel a>0, les intégrales généralisées $\int_a^{+\infty} \frac{F(t)}{t^2} \mathrm{d}t$ puis $\int_a^{+\infty} \frac{f(t)}{t} \mathrm{d}t$ sont convergentes et que :

$$\int_{a}^{+\infty} \frac{f(t)}{t} dt = \int_{a}^{+\infty} \frac{F(t)}{t^2} dt - \frac{F(a)}{a}.$$

Q6. Montrer que les intégrales généralisées $\int_0^{+\infty} \frac{\sin(t)}{t} dt \text{ et } \int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt \text{ sont convergentes et que :}$

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = \int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt.$$

Dans ce qui suit, on considère une fonction continue $f: \mathbb{R}_+ \to \mathbb{C}$ telle que $\int_0^{+\infty} f(t) \, \mathrm{d}t$ soit absolument convergente.

Q7.* Montrer que la fonction

$$\mathscr{L}(f): x \in \mathbb{R}_+ \mapsto \int_0^{+\infty} f(t) e^{-xt} dt$$

est bien définie et continue sur \mathbb{R}_+ .

Q8.* On suppose de plus que la fonction f est bornée. Montrer que la fonction $\mathcal{L}(f)$ est de classe \mathscr{C}^{∞} sur $]0,+\infty[$ et que $\mathcal{L}(f)(x)$ tend vers 0 quand x tend vers $+\infty$.

Q9. Soit
$$f: t \in \mathbb{R}_+ \mapsto \frac{1}{1+t^2}$$
.

1.* Montrer que la fonction $\mathcal{L}(f)$ est solution sur $]0,+\infty[$ de l'équation différentielle

$$(E) y'' + y = \frac{1}{x}$$

2. On cherche une solution particulière de (E) de la forme $x \mapsto \alpha(x) \cos(x) + \beta(x) \sin(x)$ où les fonctions α et β sont de classe \mathscr{C}^1 et vérifient :

$$\forall x \in]0, +\infty[, \ \alpha'(x)\cos(x) + \beta'(x)\sin(x) = 0.$$

Montrer que l'on peut prendre

$$\alpha(x) = \int_{x}^{+\infty} f_1(t) dt$$
 et $\beta(x) = \int_{x}^{+\infty} f_2(t) dt$

où f_1 et f_2 sont des fonctions que l'on déterminera.

3. En déduire que $\int_0^{+\infty} \frac{\sin(t)}{x+t} dt$ est une solution de l'équation (E) sur $]0, +\infty[$.

4. Montrer qu'il existe $(a,b) \in \mathbb{R}^2$ tel que :

$$\forall x \in]0, +\infty[,$$

$$\mathcal{L}(f)(x) = a\cos x + b\sin x + \int_0^{+\infty} \frac{\sin(t)}{x+t} dt.$$

Q10. Montrer que $\int_0^{+\infty} \frac{\sin(t)}{x+t} dt$ tend vers 0 quand x tend vers $+\infty$ et en déduire que pour tout x > 0 on a

$$\mathscr{L}(f)(x) = \int_0^{+\infty} \frac{\sin(t)}{x+t} dt.$$

Q11. Montrer que $\int_1^{+\infty} \left(\frac{\sin(t)}{x+t} - \frac{\sin(t)}{t} \right) dt$ tend vers 0 quand x tend vers 0^+ . En déduire que :

$$\lim_{x \to 0^+} \int_0^{+\infty} \frac{\sin(t)}{x+t} dt = \int_0^{+\infty} \frac{\sin(t)}{t} dt.$$

Q12. Déduire des questions précédentes que

$$\int_0^{+\infty} \frac{\sin(t)}{t} \, \mathrm{d}t = \frac{\pi}{2}.$$