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Corrigé du septième devoir à la maison

P.a. Quand t tend vers +∞,

ch(t) = 1
2 et (1 + e−2t) ∼ 1

2 et,

sh(t) = 1
2 et (1 − e−2t) ∼ 1

2 et.

P.b. D’une part, la fonction ch est positive et stric-
tement croissante sur R+. Donc son inverse, g1, est
positive et strictement décroissante sur R∗

+. En outre,
lim0+ ch = 1 et lim+∞ ch = +∞, donc lim0+ g1 = 1
et lim+∞ g1 = 0. On en déduit le tableau de varia-
tions :

t 0 +∞

g1(t)
1

0

D’autre part, sur R∗
+, la fonction sh est strictement

positive et dérivable, donc g2 y est définie et dérivable,
et pour tout t > 0,

g′
2(t) = sh(t) − t ch(t)

sh2(t)
.

Nommons N le dénominateur de g′
2 :

N ′(t) = −t sh(t) < 0,

donc N décroit strictement ; comme lim0+ N = 0,
N < 0 sur R∗

+, donc aussi g′
2 < 0. Alors, g2, décroit

strictement sur R∗
+, lim0+ g2 = 1 et lim+∞ g2 = 0.

D’où le tableau :

t 0 +∞

g2(t)
1

0

I.1.1. Pour tout n ∈ N, la fonction t 7→ tn e−t est
continue sur R+ et en +∞, tn e−t ≪ 1/t2, où la fonc-
tion t 7→ 1/t2 est intégrable en +∞, donc t 7→ tn e−t

l’est aussi. In existe pour tout n ∈ N.

I.1.2. En intégrant par parties, ce qui est permis car
tous les termes manipulés ont un sens,

In+1 =
[
−tn+1 e−t

]+∞

0
+ (n + 1)

∫ +∞

0
tn e−t dt

= (n + 1)In.

I.1.3. Clairement, I0 = 1, donc par une récurrence
immédiate, pour tout n ∈ N, In = n!

I.1.4. Le changement de variable u = α t est de
classe C 1 et bijectif de R+ dans lui-même, donc,
puisque In converge,∫ +∞

0
tn e−αt dt =

∫ +∞

0
( u

α
)ne−u du

α
= n!

αn+1 .

I.2.1. Pour tout t ⩾ 0, 0 ⩽ e−t ⩽ et, donc
1
2 et ⩽ ch(t) ⩽ et.

I.2.2. La fonction t 7→ tn/ ch(t) est continue sur R+
et d’après la minoration précédente, pour tout t ⩾ 0,
tn/ ch(t) ⩽ 2 tn e−t, où l’on reconnait l’intégrande
de In, donc t 7→ tn/ ch(t) est intégrable sur R+ et

Cn existe.
En outre, en utilisant l’encadrement précédent,

tn e−t ⩽ tn/ ch(t) ⩽ 2 tn e−t, et en intégrant sur R+,
In ⩽ Cn ⩽ 2In, donc 1 ⩽

Cn

In
⩽ 2.

I.2.3. Pour t ⩾ 0,
d
dt

(Arctan(et)) = et

1 + (et)2 = 1
e−t + et

= 1
2 ch(t) ,

donc, sachant que lim+∞ Arctan = π
2 et que

Arctan 1 = π
4 , on a C0 =

[
2 Arctan(et)

]+∞
0 = π

2 .

I.2.4. Soit t > 0. On reconnait la somme de la série
géométrique de raison −e−2t et de premier terme e−t,
laquelle converge car |−e−2t| < 1. Alors

+∞∑
k=0

(−1)k e−(2k+1)t =
+∞∑
k=0

e−t (−e−2t)k

= e−t

1 − (−e−2t) = 1
et + e−t

= 1
2 ch(t) .

I.2.5. Soit n ∈ N∗. D’après la question précédente,

Cn =
∫ +∞

0

tn

ch(t) dt

= 2
∫ +∞

0
tn

+∞∑
k=0

(−1)k e−(2k+1)t dt

Soit K ∈ N. En découpant la somme,

Cn = 2
∫ +∞

0
tn

K∑
k=0

(−1)k e−(2k+1)t dt

+ 2
∫ +∞

0
tn

+∞∑
k=K+1

(−1)k e−(2k+1)t dt.

Nommons AK la première intégrale et BK la seconde :
Cn = AK + BK .

Par linéarité, et avec I.1.4,

AK = 2
K∑

k=0
(−1)k

∫ +∞

0
tn e−(2k+1)t dt

= 2n!
K∑

k=0

(−1)k

(2k + 1)n+1

−−−−−→
K→+∞

2n!
+∞∑
k=0

(−1)k

(2k + 1)n+1 .
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Corrigé du septième devoir à la maison

C’est permis grâce au théorème spécial des séries al-
ternées, car la suite (1/(2k +1)n+1)k⩾0 décroit vers 0.

Toujours grâce au théorème spécial des séries al-
ternées, mais pour une autre série alternée,

|BK | ⩽ 2
∫ +∞

0
tn|

+∞∑
k=K+1

(−1)k e−(2k+1)t|dt

⩽ 2
∫ +∞

0
tn e−(2K+3)tdt

= 2n!
(2K + 3)n+1 −−−−−→

K→+∞
0.

Alors, en passant à la limite sur K,

Cn = 2n!
+∞∑
k=0

(−1)k

(2k + 1)n+1 .

Commentaire. Nous verrons plus tard un théorème
permettant de faire ce travail directement.

I.2.6. Pour n = 0, reprenons la démarche, mais
avec des intégrales différentes. D’une part, la série∑

k⩾0(−1)k/(2k+1) converge, grâce au théorème spé-
cial des séries alternées. D’autre part, pour K ∈ N,

K∑
k=0

(−1)k

2k + 1 =
K∑

k=0
(−1)k

∫ 1

0
t2k dt

=
∫ 1

0

K∑
k=0

(−1)k t2k dt

=
∫ 1

0

1 − (−t2)K+1

1 + t2 dt

=
∫ 1

0

dt

1 + t2 + (−1)K

∫ 1

0

t2(K+1)

1 + t2 dt.

Or

|(−1)K

∫ 1

0

t2(K+1)

1 + t2 dt| =
∫ 1

0

t2(K+1)

1 + t2 dt

⩽
∫ 1

0
t2(K+1) dt = 1

2K + 3 −−−−−→
K→+∞

0,

donc
K∑

k=0

(−1)k

2k + 1 −−−−−→
K→+∞

∫ 1

0

dt

1 + t2 =
[
Arctan t

]1

0
= π

4 ,

d’où C0 = 2
+∞∑
k=0

(−1)k

2k + 1.

I.3.1. La fonction t 7→ tn/ sh(t) est continue et inté-
grable sur R∗

+ : en effet, elle se prolonge par conti-
nuité en 0 car tn/ sh(t) ∼0 tn−1 et n ⩾ 1 ; et en +∞,
d’après P.a, tn/ sh(t) ∼ tn/ ch(t), où t 7→ tn/ ch(t) est
intégrable en +∞ d’après I.2.2.

Sn existe pour tout n ∈ N∗.

I.3.2. Pour exactement la même raison qu’en I.2.4,
1

2 sh(t) =
+∞∑
k=0

e−(2k+1)t.

I.3.3. Reprenons la démarche de I.2.5. Soit K ∈ N.

Sn =
∫ +∞

0

tn

sh(t) dt

= 2
∫ +∞

0
tn

+∞∑
k=0

e−(2k+1)t dt

= 2
∫ +∞

0
tn

K∑
k=0

e−(2k+1)t dt

+ 2
∫ +∞

0
tn

+∞∑
k=K+1

e−(2k+1)t dt

= AK + BK ,

en adaptant les notations. Comme plus haut,

AK = 2
K∑

k=0

∫ +∞

0
tn e−(2k+1)t dt

= 2n!
K∑

k=0

1
(2k + 1)n+1

−−−−−→
K→+∞

2n!
+∞∑
k=0

1
(2k + 1)n+1 ,

où la série converge bien, car pour k ⩾ 0, sachant que
n ⩾ 1,

1
(2k + 1)n+1 ⩽

1
(2k + 1)2 ∼ 1

4k2

et la série de Riemann
∑

1/k2 converge. Par ailleurs,

|BK | = BK = 2
∫ +∞

0
tn

+∞∑
k=K+1

e−(2k+1)t dt

= 2
∫ +∞

0
tn e−(2K+3)t

1 − e−t
dt

=
∫ +∞

0

tn

sh(t) e−(2K+2)t dt.

La fonction sh est convexe sur R+, donc pour tout
t > 0, sh(t) ⩾ t et

BK ⩽
∫ +∞

0
tn−1 e−(2K+2)t dt

= (n − 1)!
(2K + 2)n

−−−−−→
K→+∞

0.

Finalement, Sn = 2n!
+∞∑
k=0

1
(2k + 1)n+1 .
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II.1.1.* Posons A = R, I = R+ et considérons

g : A × I → C, (x, t) 7→ eixt

ch(t) .

◦ Pour tout x ∈ A, t 7→ g(x, t) est continue sur I.
De plus, pour tout t ∈ I, |g(x, t)| = 1/ ch(t), et l’on a
vu en I.2.2 que t 7→ 1/ ch(t) est intégrable sur I, donc
t 7→ g(x, t) l’est aussi.
◦ Pour tout t ∈ I, x 7→ g(x, t) est de classe C 1 sur A.
De plus, pour tout (x, t) ∈ A × I,

∂g

∂x
(x, t) = i teixt

ch(t) .

◦ Pour tout x ∈ A, t 7→ ∂g
∂x (x, t) est continue sur I.

◦ Enfin, pour tout (x, t) ∈ A × I,

| ∂g

∂x
(x, t)| = t

ch(t) ,

et l’on a vu en I.2.2 que t 7→ t/ ch(t) est intégrable
sur I, donc ∂g

∂x vérifie l’hypothèse de domination.
Il s’ensuit que

• pour tout x ∈ A, t 7→ ∂g
∂x (x, t) est intégrable sur I ;

• F est définie et de classe C 1 sur A ;

• pour tout x ∈ A, F ′(x) = i

∫ +∞

0

teixt

ch(t) dt.

II.1.2. La démarche est encore la même qu’en I.2.5
ou I.3.3, nous ne le referons pas...

II.1.3. Soit x ∈ R. L’intégration par parties qui suit
est valide, car tous les termes manipulés ont un sens :

|xF (x)| = |[ eixt

i ch(t) ]+∞
0 +

∫ +∞

0

eixt sh(t)
i ch2 t

dt|

= |i +
∫ +∞

0

eixt sh(t)
i ch2 t

dt|

⩽ 1 +
∫ +∞

0
|e

ixt sh(t)
i ch2 t

|dt

= 1 +
∫ +∞

0

sh(t)
ch2 t

dt

= 1 + [− 1
ch(t) ]+∞

0 = 2.

Alors pour tout x > 0, |F (x)| ⩽ 2/x et
lim

x→+∞
F (x) = 0.

II.2. Tout d’abord, pour tout x ∈ R, la convergence
de H(x) est acquise, où on reconnait la partie réelle
de F (x), qui converge avec la question II-1.

II.2.1. En I.2.4, on a manié une série alternée.
D’après le théorème spécial des séries alternées,∣∣∣∣∣

+∞∑
k=n+1

(−1)k e−(2k+1)t

∣∣∣∣∣ ⩽ ∣∣(−1)n+1 e−(2(n+1)+1)t
∣∣

= e−(2n+3)t,

ce qui s’écrit ici,

| 1
2 ch(t) −

n∑
k=0

(−1)k e−(2k+1)t| ⩽ e−(2n+3)t.

II.2.2. On a donc∣∣∣∣H(x) −
n∑

k=0

2(−1)k

(∫ +∞

0
e−(2k+1)t cos(xt)dt

)∣∣∣∣
=
∣∣∣∣∫ +∞

0

cos(xt)
ch(t) dt

−
∫ +∞

0

n∑
k=0

2(−1)k e−(2k+1)t cos(xt)dt

∣∣∣∣
= 2

∣∣∣∣∫ +∞

0
cos(xt)

(
1

2 ch(t) −
n∑

k=0
(−1)k e−(2k+1)t

)
dt

∣∣∣∣
⩽ 2

∫ +∞

0
|cos(xt)|

∣∣∣∣ 1
2 ch(t) −

n∑
k=0

(−1)k e−(2k+1)t

∣∣∣∣dt

⩽ 2
∫ +∞

0
e−(2n+3)t dt.

Bien-sûr, toutes ces intégrales convergent, grâce aux
exponentielles.

II.2.3. On a∫ +∞

0
e−(2k+1)t cos(xt)dt

= Re
(∫ +∞

0
e−(2k+1)teixt dt

)
= Re

(
[ e(−(2k+1)+ix)t

−(2k + 1) + ix
]+∞
0

)
= Re

(
1

2k + 1 − ix

)
= 2k + 1

(2k + 1)2 + x2 .

II.2.4. Puisque∫ +∞

0
e−(2n+3)t dt = 1

2n + 3 −−−−−→
n→+∞

0,

la série dont on voit les sommes partielles en II.2.2
converge et sa somme est H(x). D’après II.2.3, on a
donc

H(x) =
+∞∑
k=0

2(−1)k (2k + 1)
(2k + 1)2 + x2 .

III.1. L’ensemble des solutions de y′′ = y est
S0 = Vect(ch, sh).

III.2.1. Utilisons la méthode de variation de la
constante : posons, pour tout t ∈ R, y(t) = z(t) ch(t),
où z est une fonction deux fois dérivable sur R. Alors
d’après la formule de Leibniz,

y′′(t) = z′′(t) ch(t) + 2z′(t) ch′(t) + z(t) ch′′(t)
= z′′(t) ch(t) + 2z′(t) sh(t) + z(t) ch(t).

Donc,

∀t ∈ R, y′′(t) − y(t) = 1
ch(t)

⇐⇒ ∀t ∈ R, z′′(t) ch(t) + 2z′(t) sh(t) = 1
ch(t)
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⇐⇒ ∀t ∈ R, z′′(t) ch2(t) + 2z′(t) sh(t) ch(t) = 1
⇐⇒ ∀t ∈ R, (z′ ch2)′(t) = 1
⇐⇒ ∃β ∈ R, ∀t ∈ R, z′(t) ch2(t) = t + β

⇐⇒ ∃β ∈ R, ∀t ∈ R, z′(t) = t

ch2(t)
+ β

ch2(t)
⇐⇒ ∃(α, β) ∈ R2, ∀t ∈ R,

z(t) =
∫

t

ch2(t)
dt +

∫
β

ch2(t)
dt + α.

Une primitive de 1/ ch2 est sh / ch, et pour l’autre
primitive, en intégrant par parties,∫

t

ch2(t)
dt = t sh(t)

ch(t) −
∫ sh(t)

ch(t) dt

= t sh(t)
ch(t) − ln(ch(t)).

On a choisi une primitive. Ainsi,

∀t ∈ R, z′′(t) ch2(t) + 2z′(t) sh(t) ch(t) = 1
⇐⇒ ∃(α, β) ∈ R2, ∀t ∈ R,

z(t) = t sh(t)
ch(t) − ln(ch(t)) + β

sh(t)
ch(t) + α.

Et comme y = z ch,
y ∈ S

⇐⇒


∃(α, β) ∈ R2, ∀t ∈ R,

y(t) = t sh(t) − ch(t) ln(ch(t))
+ α ch(t) + β sh(t).

III.2.2. Si y est impaire, y′′ l’est aussi, donc y′′ − y
l’est, et ne peut être égale à 1/ ch qui est paire.

Aucune fonction de S n’est impaire.

III.2.3. Soit θ ∈ S , paire : il existe (α, β) ∈ R2 tel
que pour tout t ∈ R,

θ(x) = t sh(t) − ch(t) ln(ch(t)) + α ch(t) + β sh(t).

Comme θ est paire, sa partie impaire, β sh, est nulle,
donc β = 0. En outre, θ(0) = 1 = α.

Ainsi, pour tout t ∈ R,

θ(t) = t sh(t) − ch(t) ln(ch(t)) + ch(t).

III.3.1. D’après le cours, pour tout pour tout t ∈ R,

ch(t) =
+∞∑
n=0

t2n

(2n)! .

III.3.2. On a0 = 1 donc b0 = 1. Si n ∈ N, en suppo-
sant définis les bk, pour k ∈ [[0, n]], on construit bn+1
en posant

bn+1 = −
n∑

k=0
bk an+1−k.

Alors, on aura bien
n+1∑
k=0

bk an+1−k =
n∑

k=0
bk an+1−k + bn+1 a0 = 0.

D’après le principe de récurrence, la suite ainsi définie
par récurrence est unique.

III.3.3. On a
b0 = 1, b1 = −b0 a1 = − 1

2

b2 = −b0 a2 − b1 a1 = − 1
24 + 1

2 · 1
2 = 5

24 .

III.3.4. Procédons par récurrence, grâce à la relation
de III.3.2. On sait déjà que b0 = 1. Supposons que
pour un n ∈ N et tout k ∈ [[0, n]], |bk| ⩽ 1. Alors

|bn+1| ⩽
n∑

k=0
|bk|an+1−k ⩽

n∑
k=0

an+1−k

=
n+1∑
k=1

ak ⩽
+∞∑
k=1

ak = ch(1) − 1 ⩽ 1.

Ainsi, par récurrence, pour tout n ∈ N, |bn| ⩽ 1.

III.3.5. Pour tout t ∈ ]−1, 1[ et tout n ∈ N,

|bn t2n| = |bn| t2n ⩽ t2n.

Or t2 ∈ [0, 1[, donc la série
∑

n⩾0 t2n converge, comme
série géométrique de raison t2.

Donc pour tout t ∈ ]−1, 1[, la série définissant g(t)
converge absolument.

De plus, pour t ∈ ]−1, 1[, le produit de Cauchy des
deux séries

∑
n⩾0 an t2n et

∑
n⩾0 bn t2n est la série∑

n⩾0 cn, où

cn =
n∑

k=0
bk t2k an−k t2(n−k)

=
(

n∑
k=0

bk an−k

)
t2n,

donc c0 = 1 et cn = 0 si n ⩾ 1. Or( +∞∑
n=0

an t2n

)( +∞∑
n=0

bn t2n

)
=

+∞∑
n=0

cn,

donc ch(t)g(t) = 1.

III.4. J’ai oublié de taper la fin :-(
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