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Corrigé du septieme devoir a la maison

P.a. Quand t tend vers 400,
ch(t) =
sh(t) =

el (14e72) ~ %et,

el(1—e?) ~

el

Nl N

1
2

P.b. D’une part, la fonction ch est positive et stric-
tement croissante sur R;. Donc son inverse, g1, est
positive et strictement décroissante sur R . En outre,
limg+ ch = 1 et lim; o ch = 400, donc limg+ g1 = 1
et limy. g1 = 0. On en déduit le tableau de varia-
tions :

t 0 400
1

91(t) \ 0

D’autre part, sur R7 , la fonction sh est strictement
positive et dérivable, donc g y est définie et dérivable,
et pour tout ¢t > 0,

sh(t) — tch(t)
sh?(t)
Nommons N le dénominateur de g5 :

N'(t) = —tsh(t) < 0,

95(t) =

donc N décroit strictement; comme limg+ N = 0,
N < 0 sur R%, donc aussi g5 < 0. Alors, ga, décroit
strictement sur R%, limg+ go = 1 et lim o, g2 = 0.
D’ou le tableau :

ga(t) \ 0

I.1.1. Pour tout n € N, la fonction t — t"e~? est
continue sur R et en +oo, t"e~! < 1/t2, ol la fonc-
tion ¢+ 1/t2 est intégrable en +oo, donc t +— t" et
I’est aussi. | I,, existe pour tout n € N.

1.1.2. En intégrant par parties, ce qui est permis car
tous les termes manipulés ont un sens,

+o0 +oo
Iy = [—t"“ e_t}o + (n+ 1)/ t"etdt
0
=(n+1)L,.

1.1.3. Clairement, | Iy = 1, donc par une récurrence
immédiate, |p0ur tout n €N, I, = n!

1.1.4. Le changement de variable u = at est de
classe €' et bijectif de R, dans Iui-méme, donc,
puisque I,, converge,

/+OO tne—atdt — /+Oo(u)n€—u dl _ n!
0 0 a a antl’

1.2.1. Pour tout t > 0, 0 < et < e, donc
| <e

1.2.2. La fonction ¢ — ¢™/ ch(t) est continue sur Ry
et d’apres la minoration précédente, pour tout ¢ > 0,
t"/ch(t) < 2t" et ot l'on reconnait I'intégrande
de I,,, donc t +— ¢™/ ch(t) est intégrable sur R, et

C,, existe.

En outre, en utilisant ’encadrement précédent,
tme~t < t™/ch(t) < 2t"e!, et en intégrant sur Ry,

C,
I, <C, <2I,, donc 1<I—”<2.

n

1.2.3. Pour t > 0,

d et 1 1
— (Arct ) = = =
dt( retan(e’)) 1+ (et)2 e t+et  2ch(t)’
donc, sachant que lim;., Arctan = 3 et que
s too s
Arctanl =2, ona|Ch = [2 Arctan(et)]o =73.

1.2.4. Soit t > 0. On reconnait la somme de la série
géométrique de raison —e~2* et de premier terme e %,

laquelle converge car |—e~2!| < 1. Alors

+oo

Z( 1)k —(2k+1)t _ Ze—t —2t
k=0

B et B 1 1
1= (—e"2t)  et4et  2ch(t)

1.2.5. Soit n € N*. D’apres la question précédente,

“+oo t’n
C, = / g
0 ch(t)
+oo +°°
_ 2/ tn )ke—(2k+1)t dt

Soit K € N. En découpant la somme,
K

+oo
C’n, — 2/ +n Z(il)ke*(2k+1)t dt
0 k=0

+o0 too
+2/ "y (~1)Fem Ry
0

k=K+1
Nommons A la premiére intégrale et B la seconde :

C, = Ak + Bg.

Par linéarité, et avec 1.1.4,

A = 22 / e~ (2k+1t gy
K

- kz 2k+1”+1
'Z 2k+ n+1

K—)Jroo
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CORRIGE DU SEPTIEME DEVOIR A LA MAISON

C’est permis grace au théoréme spécial des séries al-
ternées, car la suite (1/(2k+1)"T1);>0 décroit vers 0.

Toujours grace au théoreme spécial des séries al-
ternées, mais pour une autre série alternée,

+oo too
|Bx| <2/ "] (—Dke G
0 k=K+1
—+oo
< 2/ o RK43)E g
0

B 2n/! 0
(2K +3)"t Kostoo
Alors, en passant a la limite sur K,

Cp =2 'ioi(_l)k
b n'kzo (2k + 1)+t

Commentaire. Nous verrons plus tard un théoreme
permettant de faire ce travail directement.

1.2.6. Pour n = 0, reprenons la démarche, mais
avec des intégrales différentes. D’une part, la série
Zk>0(—1)k/(2k+1) converge, grace au théoréme spé-
cial des séries alternées. D’autre part, pour K € N,

i (-1)* i k1
(1) / 2k 4t
k=0 2k+1 k=0 0
1 K
= [ Yvreta
(O —
1 t2 K+1
/ 1—(=t3)" dqt
o 1+t
1 1 42(K+1)
det t
=/ —+(—1)K/ dt.
0 1+12 o 1412
Or
1 12(K+1) 1 12(K+1)
t t
e [ = [
o 1+¢2 0 1412
1
1
< | PED Q= — 0
/0 2K+3 K—+o00 ’
donc
K 1
—1)k de 1
Z (1) / = [Arctant} = E,
=2k 41 Kotoo Jo 1+12 o 4
+oo 1)k

douC’o—QZ

2k +

1.3.1. La fonction ¢ — ™/ sh(t) est continue et inté-
grable sur R} : en effet, elle se prolonge par conti-
nuité en 0 car ¢"/sh(t) ~g t""Let n > 1; et en +o0,
d’apres P.a, t"/sh(t) ~ ™/ ch(t), ou t — "/ ch(t) est
intégrable en +oo d’apres 1.2.2.

| Sh. existe pour tout n € N*.

1.3.2. Pour exactement la méme raison qu’en 1.2.4,

Ze (2k+1)t

Zsh

2

4

1.3.3. Reprenons la démarche de 1.2.5. Soit K € N.

“+oo t’n
= —dt
o / h(t)

“+o00 “+oo
= 2/ t"
0 k=0
K
Z (2k+1) tdt
+oo
+2/ o
0
= Ax + Bx,

Z e—(2k+1)tdt
+oo
2
k=0

+oo

>

k=K+1

o~ 2R+t gy

en adaptant les notations. Comme plus haut,

1
ST P —
+1
= 2k+ 1)

+oo 1

oy
! = 2k + 1)t

K—+o00

ou la série converge bien, car pour k >
n>l1,

0, sachant que

1 1 1
< ~—
Qk+ 1)t S 2k +1)2 © 4k2

et la série de Riemann Y 1/k? converge. Par ailleurs,
+oo

—+o0
|BK|:BK:2/ £
0 k=K+1

too ,—(2K+3)t
=2 t—
/0 1—et

_/+OO tn
“ Sy sh(®)©

La fonction sh est convexe sur R, , donc pour tout
t>0,sh(t) >tet

e—(2k+1)t dt

dt

<

+oo
BK < / tn71€7(2K+2)tdt
0

~ (n—1)!
o (2K+2)n K—+o00

o0 1

Finalement, S,, = 2n! Z _ .
» M n+1
Pt (2k+1)
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II.1.1.* Posons A =R, I = R, et considérons
ixt

cAXT —_—.
g x I —C, (z,t (D)

)

o Pour tout = € A, t — g(x,t) est continue sur I.

De plus, pour tout ¢t € I, |g(x,t)] =1/ ch(t), et 'on a
vuen 1.2.2 que t — 1/ ch(t) est intégrable sur I, donc
t — g(z,t) Pest aussi.

o Pourtout t € I, x — g(x,t) est de classe € sur A.

De plus, pour tout (z,t) € A x I,
dg ; itelwt
~ ch(t)’
o Pourtout z € 4, ¢t — 3 9 (x,t) est continue sur I.
o Enfin, pour tout (z,t) € A x I,
dg t
Zzt) = —,
|5, (@t (D)
et 'on a vu en 1.2.2 que ¢t — ¢/ ch(t) est intégrable
sur I, donc % vérifie 'hypothese de domination.
Il s’ensuit que
e pour tout x € A, t — (x t) est intégrable sur T ;
o | F est définie et de classe €1 sur A;
400 teiwt

ch(t)

e |pour tout x € A, F'(z) = z/
0

I1.1.2. La démarche est encore la méme qu’en 1.2.5
ou 1.3.3, nous ne le referons pas...

I1.1.3. Soit = € R. L’intégration par parties qui suit

est valide, car tous les termes manipulés ont un sens :

ixt +o0 izt
sh(t)
= + £
2@ = g™+ [ o
z:z:t Sh
=i dt
=i / Cich®t |
zxt h
<1 / L0
— zch
/ ch2
1
=2
+I- ch(t)} —
Alors pour tout z > 0, |F(x)| < 2/z et
lim F(z)=0.
r—+00

I1.2. Tout d’abord, pour tout « € R, la convergence
de H(x) est acquise, ol on reconnait la partie réelle
de F(x), qui converge avec la question II-1.

I1.2.1. En 1.2.4, on a manié une série alternée.

D’apres le théoréme spécial des séries alternées,
+oo

Z (_1)ke—(2k+1)t <

k=n-+1

’(_1)n+1 e—(2(n+1)+1)t

_ e—(2n+3)t
ce qui s’écrit ici,
n
¢

3

4

I1.2.2. On a donc

H(;z:)fiQ(f k +°§*<2k+1>tcos(xt)dt
-3 (] )
- “foi”? a

Y= CRHDL cog(at) dt‘

=2

/+Oo n
) ’

/0 cos(xt) (2(:}11(15) - kZ(—l)ke_(Zk“)t) dt

+oo |’ 1

2 |cos(zt) tdt

0

Bien-siir, toutes ces intégrales convergent, grace aux
exponentielles.

I1.2.3. On a

+oo
J
—+o00
= Re (/ e—(2k+1)tei3:t dt)
0

o(—(2k+1)+iz)t .
= R _— o
e([(2k+ ) +iz? )

1
_Re<2k+1—ix) -

I1.2.4. Puisque

+oo 1
/ o—(2n+3)t g
0 2n +3 n—o+oo

la série dont on voit les sommes partielles en 11.2.2
converge et sa somme est H(z). D’apres 11.2.3, on a
donc

+oo _1\k
H@) =3 2(2k1) 2k +1)
k=0

e~ R+t cog(xt) dt

2k 41
2k+1)2 + a2

0,

(
(2k +1)2 + 22

III.1. L’ensemble des solutions de 3" = y est
| #0 = Vect(ch, sh).

IT1.2.1. Utilisons la méthode de variation de la
constante : posons, pour tout t € R, y(t) = z(t) ch(t),
ol z est une fonction deux fois dérivable sur R. Alors
d’aprés la formule de Leibniz,

y"(t) = 2" (t) ch(t) + 22'(t) ch'(t) + 2(t) ch” (¢)
= 2"(t) ch(t) + 22'(t) sh(t) + z(t) ch(t).
Donc,
Ve R () = 3(t) = g
= HER, (1) ehlt) +2(0)shit) =
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Vt € R, 2"(t)ch?(t) + 22/ (t) sh(t) ch(t) = 1
VteR, (2 ch?)(t) =1
IBERVLER, 2/(t)ch®*(t) =t +f

IBeR,VLER, 2/(t) =

ch®(t) ~ ch®(t)

11111

(o, B) € R%,Vt € R,

_ t B
2(t) = / 0 dt + g dt

Une primitive de 1/ch? est sh/ch, et pour 'autre
primitive, en intégrant par parties,

+ a.

_ tsh(t) sh(t)

'
/m%ﬂ“WMﬂ_/m@&
_ t;h(f)) ~ In(ch(t)).

On a choisi une primitive. Ainsi,

vt € R, 2”(t) ch®(t) + 22/ (t) sh(t) ch(t) = 1
< I(a,B) e RVt ER,

 tsh(t)
0 ="3m

(t)
(t)

—In(ch(t)) + 8

sh + a.
ch
Et comme y = zch,
y €.
I(a, B) € R%,Vt € R,
y(t) = tsh(t) — ch(t) In(ch(t))
+ ach(t) + Bsh(t).

—

II1.2.2. Si y est impaire, y” P'est aussi, donc vy’ — y
Pest, et ne peut étre égale a 1/ch qui est paire.

| Aucune fonction de . n’est impaire.

I11.2.3. Soit 6 € .7, paire : il existe (o, ) € R? tel
que pour tout t € R,

0(x) = t sh(t) — ch(¢) In(ch(¢)) + ach(t) + Bsh(?).

Comme @ est paire, sa partie impaire, 8 sh, est nulle,
donc 5 = 0. En outre, 6(0) =1 = a.
Ainsi, pour tout t € R,

0(t) = tsh(t) — ch(¢) In(ch(¢)) + ch(¢).

IT1.3.1. D’apres le cours, pour tout pour tout ¢ € R,

—+o0

>

n=0

t2n
(2n)!”

ch(t) =

4
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I11.3.2. On ag = 1 donc by = 1. Si n € N, en suppo-
sant définis les by, pour k € [0, n], on construit by,1
en posant

n
bpy1 = — E br Grt1—k-
k=0

Alors, on aura bien

n+1 n
E b Gny1—k = E b Gny1—k + bpr1ag = 0.
k=0 k=0

D’apres le principe de récurrence, la suite ainsi définie
par récurrence est unique.

I11.3.3. On a

b()zl7 blz—boalz—

"‘ DO

bzz—boag—blalz— +

.1
2~ 24

N

2

=

III1.3.4. Procédons par récurrence, grace a la relation
de II1.3.2. On sait déja que by = 1. Supposons que
pour un n € N et tout k € [0,n], |bx| < 1. Alors

n n
|bn+1| < Z|bk‘|an+1—k‘ < Zan-i-l—k:
k=0 k=0
n+1 “+o0o
= Zak < Zak =ch(l)-1<1.
k=1 k=1

Ainsi, par récurrence, | pour tout n € N, |b,| < 1.

II1.3.5. Pour tout ¢ € |—1, 1] et tout n € N,

|bnt2n| _ |bn|t2n < t2n.
Ort* € [0,1[, donc la série ), -, t*" converge, comme
série géométrique de raison t2.

Donc pour tout ¢t € |—1, 1], la série définissant g(¢)
converge absolument.

De plus, pour ¢ € |—1, 1], le produit de Cauchy des
deux séries Y5 oo ant®" et 35 oD t°" est la série
Zn>o Cn, OU

k=0
n
= Z by, an—k) 2",
k=0
donccg=1letc,=0sin>1. Or

“+oo +oo “+o0
( Z ant%) ( Z bnt2”> = Z Cn,s
n=0 n=0 n=0

| donc ch(t) g(t) = 1.

II1.4. J’ai oublié de taper la fin :-(
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