Huitième devoir à la maison

[CCP05]

Les calculatrices sont interdites. Les questions étoilées sont réservées aux 5/2 et aux 3/2 aventureux.

Partie I

On considère l'équation différentielle linéaire du 2^e ordre en la fonction inconnue y de la variable réelle x:

$$(\mathcal{E}_{\lambda}) \qquad x(x+1)y''(x) + (2x+1)y'(x) - \lambda(\lambda+1)y(x) = 0,$$

où λ désigne un paramètre réel.

I.1. Étant donné $\lambda \in \mathbb{R}$, comparer les équations (\mathscr{E}_{λ}) et $(\mathscr{E}_{-\lambda-1})$.

On supposera dans la suite du problème que $\lambda \geqslant -\frac{1}{2}$.

Dans la suite de cette partie, y désigne une fonction de la variable réelle x, admettant un développement en série entière

$$y(x) = \sum_{n=0}^{+\infty} a_n x^n$$

au voisinage de 0.

I.2. Montrer que, pour que y soit solution de l'équation (\mathscr{E}_{λ}) , il faut et il suffit que l'on ait pour tout $n \in \mathbb{N}$:

$$a_{n+1} = \frac{(\lambda + n + 1)(\lambda - n)}{(n+1)^2} a_n.$$

I.3.

- **I.3.1.** Donner une condition nécessaire et suffisante sur $\lambda \in \left[-\frac{1}{2}, +\infty\right[$ pour que l'équation (\mathscr{E}_{λ}) admette des solutions polynomiales de degré donné $d \in \mathbb{N}$.
- **I.3.2.** Lorsque c'est le cas, montrer qu'il existe une unique solution polynomiale de (\mathscr{E}_{λ}) de degré d, que nous noterons φ_d , telle que $\varphi_d(0) = 1$.
 - **I.3.3.** Expliciter la fonction polynôme φ_1 .
- **I.3.4.** Déterminer les coefficients a, b, c, a', b', c' tels que :

$$\frac{8x^2 + 8x + 1}{x(x+1)(2x+1)} = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{2x+1},$$
$$\frac{1}{x(x+1)(2x+1)^2} = \frac{a'}{x} + \frac{b'}{x+1} + \frac{c'}{(2x+1)^2}.$$

En déduire la solution générale de l'équation (\mathscr{E}_1) sur $]0, +\infty[$.

- **I.4.** On se place dans le cas où $\lambda \geqslant -\frac{1}{2}$, $\lambda \notin \mathbb{N}$.
- **I.4.1.** On suppose que y est une solution non identiquement nulle de (\mathscr{E}_{λ}) . Déterminer le rayon de convergence de la série entière

$$\sum_{n=0}^{+\infty} a_n x^n.$$

- **I.4.2.** Montrer qu'il existe une unique solution de (\mathscr{E}_{λ}) , que nous noterons φ_{λ} , développable en série entière de la variable x sur]-1,+1[et telle que $\varphi_{\lambda}(0)=1$.
- **I.4.3.** Expliciter les développements en série entière de la variable x des fonctions $\varphi_{-\frac{1}{2}}$ et $\varphi_{\frac{1}{2}}$.

Partie II

Soit ψ la fonction de la variable réelle x définie par :

$$\psi(x) = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \sqrt{1 + x \sin^2 t} \, dt.$$

- II.1.* Montrer que ψ est définie et continue sur $[-1, +\infty[$.
- **II.2.*** Montrer que ψ est indéfiniment dérivable sur $]-1,+\infty[.$

II.3.

II.3.1. Montrer que pour tout $u \in]-1, +1[$ on a

$$\sqrt{1+u} = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{2n-1} \frac{(2n)!}{2^{2n} (n!)^2} u^n.$$

II.3.2. Montrer que ψ est développable en série entière de la variable x sur]-1,+1[et que l'on a :

$$\forall x \in \left] -1, +1\right[,$$

$$\psi(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{2n-1} \frac{(2n)!}{2^{2n} (n!)^2} \left(\frac{2}{\pi} \int_0^{\frac{\pi}{2}} \sin^{2n} t \, \mathrm{d}t \right) x^n.$$

II.3.3. Pour tout $n \in \mathbb{N}$ on pose

$$I_n = \int_0^{\frac{\pi}{2}} \sin^{2n} t \, \mathrm{d}t.$$

Montrer que pour tout $n \geqslant 1$ on a

$$I_n = \frac{2n-1}{2n} I_{n-1}.$$

Calculer I_0 . En déduire I_n pour tout $n \in \mathbb{N}$, ainsi que le développement de ψ en série entière de la variable x sur]-1,+1[.

II.3.4. Montrer que pour tout $n \in \mathbb{N}$, on a

$$\frac{(2n)!}{2^{2n}(n!)^2} \leqslant 1.$$

II.3.5. Montrer que le développement de ψ en série entière est intégrable terme à terme sur]-1,+1[, et en déduire que :

$$\int_{-1}^{+1} \psi(x) dx = -2 \sum_{p=0}^{+\infty} \frac{1}{(4p-1)(2p+1)} \left(\frac{(4p)!}{2^{4p}((2p)!)^2} \right)^2.$$

II.4. Déduire du développement de ψ en série entière une expression de $\psi(x)$ en fonction de $\varphi_{\frac{1}{2}}(x)$ et $\varphi_{-\frac{1}{2}}(x)$ pour tout $x \in]-1, +1[$.

Partie III

Soit f la fonction de la variable réelle t définie par :

$$f(t) = \frac{1}{2} \int_{-1}^{+1} \sqrt{1 + x \sin^2 t} \, \mathrm{d}x.$$

- **III.1.*** Montrer que f est définie et continue sur \mathbb{R} , et 2π -périodique.
- **III.2.*** Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R} .

FIN DE L'ÉNONCÉ