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Corrigé du huitieme devoir a la maison

L1 Pour A€ R, (-A—1)(-A—1+1)=AA+1),
| donc les équations (6-x—1) et (£)) sont les mémes.

+oo
I1.2. On a y(z) = Z anz". En reportant dans (&)),
n=0

22y (z) + xy (x) + 22y () + ¢/ (2)

—AA+Dy(z)=0
+oo

= xQZn(n— 1)a,z" 2
n=2
+oo
+x Z(n + 1) napz™ !
n=1
—+o0 —+o0
+ 2z Z napz™ ' + Z(n + Dapyrz”
n=1 n=0

“+o0
“AA+1)) ana™ =0
n=0

+ o0 400
= Zn(n —Dayz™ + Z(n + Dnapeqz”
n=0 n=0
+oo +oo
+ Z 2na,x" + Z(n + Dappqz”
n=0 n=0

+oo
“AA+1) D apa" =0
n=0

—+o0

= Y ((+1D%ann

n=0
+(n(n+1) —)\()\+1))an>xn —0.

Par unicité du développement en série entiere de la

fonction nulle, cette somme est nulle si et seulement

si tous ses coefficients sont nuls, c’est-a-dire si et

seulement si

A+n+1)(A=n)
(n+1)2

VneN, a4 = Q.

1.3.1. Soit d € N. Si (&) admet une solution polyno-
miale de degré d, elle admet une solution développable
en série entiere dont les termes sont nuls a partir du
rang d : pour n > d, a1 = 0. En particulier
A+d+1)(A—4d)
(d+1)2

doncd=Acarag #0et —A—1< —%. Il est donc
nécessaire que A soit un entier naturel.

Réciproquement, si A € N, la relation de la ques-
tion 1.2 avec ag réel définit une unique suite telle que
ay # 0, axy1 = 0 et donc pour n > A+ 1, a, = 0.
Il s’ensuit que le polynéme Z:\z:() anx™ est solution
de (éo,\)

Finalement, (&) admet une solution de degré

d € N si et seulement si A = d.

ad:O

Qd4+1 =

1.3.2. Soit A = d. D’apres ce qui précede,
il existe une unique solution polynomiale de de-
gré d telle que ag = 1.

Commentaire. Attention, le théoréeme de Cauchy-
Lipschitz ne s’applique pas ici, car on est sur un
intervalle, R, contenant 0, qui est une singularité

de (éa,\)

1.3.3.SiA=1,ap=1et ay = 2.
|12 = 22 + 1 est solution sur R de (£7).

I.4. Dans la premiere égalité, on trouve [a =1 en
multipliant a gauche et a droite par z, puis en sub-

stituant 0 a x. De méme, | b = 1 en multipliant par

x + 1 et en faisant z = —1; | c = 4 en multipliant par
2x + 1 et en faisant x = —%. Ainsi,
8a*+8x+1 1 1 4
r(x+1)Q2zx+1) =z z+1 2x+1
De méme,
1 1 1 4

c(x+1)Q2r+1)2 2 z+1 (2z+1)2

Résolvons (&1) par la méthode de variation de
la constante. Cherchons les solutions de (&) sous
la forme y = A¢p; ou A est une fonction deux
fois dérivable. Pour alléger les écritures, posons
A:z—a(z+1),B=A" 12— 2zx+1letC:x— —2.
Sur ]0, 00|, comme ¢ est solution de (&1) et que
A>0et p; >0,

Ay +By +Cy=0
= AN o1 + 2N @ + AeY)
+ BN o1 +A¢)) +Chpr =0
= Ap1 N+ (24¢) + Bor) XN
T (AP + B +Cp1) A=0
0

2A0] + B
<:>/\’ozexp</901+ 901)
Apy

oen{ 5 %)
)

=aexp(—2lnp; —In A

= ALSO%’ a € R.
D’apres la question précédente, pour x > 0,
1 B 1
A@)pi(z)  z(z+1)(2z+1)2
1 1 4
Tz z+1 2z +1)%

donc il existe (a, 3) € R? tel que

T 2
= n—m 4+ — .
Vo >0, A(z) a(nx+1+2x+1>+ﬁ
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CORRIGE DU HUITIEME DEVOIR A LA MAISON

L’ensemble des solutions de (&) sur |0, +o00[ est
x

{xr—>a((2:17+1)ln 1+2)

T+
+82x+1), (a,8) € RQ}.

1.4.1. D’apres la question 1.2, comme y n’est pas
polynomiale, pour n € N, a,, # 0 et
[(A+n+1)(A—n)]

(n+1)2 n—+too

Ap+1
Qp

| donc ) a, 2™ a pour rayon de convergence 1.

1.4.2. Ainsi, toutes les suites vérifiant la récurrence
de 1.2 conduisent & une solution de (&£)) développable
en série entiere sur |—1,1[. La seule qui vaille 1 en 0
correspond a ag = 1.

(&\) admet une unique solution @y sur |—1,1[ dé-
veloppable en série entiere et telle que ¢y (0) = 1.

(n+ 3)?
(n+1)2

2

) Ap—2

1)2
ag

1.4.3. Pour )\ = —%, pt1 = — a, donc

( )

5 ((2n—-1)(2n—-3)
(=1) ( (2n) (2n — 2)

2n—1
2n

an

_ L[ (2n—1)(2n—3)---3-
—Cy ( @n)2n—2) 4.2

ce que prouve une récurrence immédiate.

NOTATION. Dorénavant, notons

b — (2n)!
" 22n (nl)2”
Ainsi,
+o00
Vo € ]_17 1[7 ()071/2('1:) = Z(_l)nbixn
n=0
n -+ 3V (p -1
Pour A\ = %, pt1 = —((712_)|_(1)22) a,, donc
_ (@2n+1) (2n-3)
an = (2n) (2n) n-1

2n+1)2n—1)---5-3
(2n)(2n—2)---4-2

= (-1

(2n—-3)(2n—=>5)---1-(-1)
Cn)@2n—2)---4.2 °©
1 2n)!
— (1) (2n—|—1)22(n(n)!)2

2n—-1) (2n—-3)(2n—5)---1
2n—-1) (2n)(2n—2)---4-2
2n+1) 4

2n—1)™

ce que prouve une récurrence immédiate. Ainsi,

= (-1

2|4

Ve e]-1,1],
+o0
_ n 1(2n+1) 2. n
%01/2(@—7;(—1) * mbnx :

NOTATION. Dans la suite, posons I = [0, T].

I1.1.* Commentaire. Conformément au programme,
on n’insistera pas sur la continuité (par morceaux)
des fonctions dépendant de la variable ¢ d’intégration.

Posons A = [—1, +o0[ et considérons

g: Ax T =R, (x,t) =1+ xsin?t.

Pour tout ¢t € I, x — g(x,t) est continue sur A. Soit
a > —1. Pour (z,t) € [-1,a] x I,

lg(z,t)] < v/1+ max(1,a) = M,,

ou la fonction t — M, est intégrable sur I.

Alors pour tout z € [—1,al, t — g(x,t) est inté-
grable sur T et ¢ est définie et continue sur [—1, a].
Comme c’est vrai pour tout a > —1,

| 1 est définie et continue sur [—1, +ool.

II.2.* Pour tout t € I, = +— g(x,t) est de
classe € sur A’ = |—1,400[. On exclut —1 car
r +— g(z,%) = V1+2z n'est pas dérivable en —1.
Pour tout p € N* et (z,t) € A’ x I,

dPg

or (2 —k)sin® (1 + x sin?t)2 7P,

(l’,t) =

Soit a € A’. Pour tout p € N* et (x,t) € [a, o0 x I,

0Py = 1 1
Ta@o)| < |TIG - 0|0+ akr =N,
k=0

ol t — N, est intégrable sur I.

Alors, comme dans la question précédente, les
conclusions sont valides pour tout a > —1, donc sur
A’ tout entier : pour tout (p,z) € Nx A’ ¢ — gz,g, (z,1)
est intégrable sur I,

1 est de classe € sur A’, et pour tout

(p,r) e Nx A,
/'71'/2 apg
0 3xp

Commentaire. Dans le programme ne figure pas de
théoréme de la classe €°° pour les intégrales a para-
metre. Mais en dominant toutes les dérivées partielles,
on voit qu’on peut appliquer directement le théoreme
de la classe €% pour tout k € N*.

2

PP (z) = - (z,t)dt.
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I1.3.1. Soit u € ]—1, 1[. D’apres le cours,

\/Hﬁ(1+u)1/2+§(142>:17

n=0
Soit n € N*,
1/2\ 1 5%7/1 (-t 1
(n)—mg<z‘k>—2m [1{¥-35

) i nl:[l(2k 1)

2nl2n—1 P

et

= Fni@n ) kl;[l(% -1

N G D VS CT g DED D VYD)
2nnl(2n —1) [Th i (2k)

ot emr nrt
2nnl(2n —1) 27n! 2n—1 "

Par ailleurs, (162) =1 = by. Ainsi,

n—1

+oo
Yu € ]—1,1[, V4 14+u= Z (2,’%7_11771,’&”.
n=0

11.3.2. Soit = € |—
tout ¢ € [0, 5],

1,1[. D’apreés ce qui précéde, pour

V1 + x sin® _Z 2n—1 (z sin?t)"
Soit N € N. On peut écrire
2 7|'/2 +oo (_l)n_l
=— b, (zsin? )" |dt
vie) = 2 | (z_j b sin?)

N

D

2 /77/2
T Jo n=0
/'TF/Z ( Z
0 n=N+1

2
+ =
™
N nl 2
Z:: n—l T

(_l)n—l
2n—1

by, 2™ sin?™ t> dt

S Vi

2n —1

/2
/ sin?™ tdt
0

by ™ sin?" t) dt

2 /2 = (_1)n—1 n .2
n=N+1

Ry
D’une part, pour tout n € N*,

_1)n—1 /2
Lbnz" (2/ sin2"tdt>|
™ Jo

2n -1
1 9 /2 ]
< mbn|$|n;/o\ |Sln2"t‘dt

< 1
2n -1
Comme |z| < 1, d’aprés la question précédente, la
série entiere
>

n=0

by |z|™.

(_1)n—1
2n—1

bn xn

3

converge absolument, donc il en est de méme de la

série entiere
) Tr/2
by, x" f/ sin®" tdt
™ Jo

—_1)n—1
Z( )

2n —1
n=0
et
N _ /2
. (=" 2// 5
1 bz | — mede
Ninfoo; 2n — 1 e
+oo n—1 /2
" 2
:Z( ) by " 7/ sin?" ¢ dt
= 2n—1 T Jo

D’autre part,

/2 +oo
|Rn| < / Z 2n b z" sin®" ¢| dt
n=N+1
2/”/2 R |
<z b fa|” |t
™ Jo n§+1 2n —1
—+oo
1
= bn n.
2 gptnlel
n=N+1

Comme |z| < 1, en invoquant la méme série entiére
que plus haut,

400 1

2.

n=

li b " =0.
NHITOO 1 2n—1 n|$‘ 0

Alors, en passant a la limite sur N dans l'expres-

sion de ¥(z),

400 2 7T/2

Z by, 7/ sin?™ tdt | z
n=0 T Jo

Commentaire. Nous verrons plus tard un théoreme
qui permettra d’étre bien plus efficace.

(-1

P(z) = 51

I1.3.3. On reconnait les intégrales de Wallis :
|VnEN, Iy =bp 5

Commentaire. Ce résultat n’est pas a connaitre et il
va de soi qu’il faut le démontrer. Mais je renvoie au
calcul effectué dans le cours.

Alors,
+oo n—1
1 .
veel-Laf v =Y S
n=0

I1.3.4. Pour n € N, | b, < 1, car

2 n
@2p)-[Jr-1)

p=1

3

k:
P

(2n)!

n

=~
Il
_

o 2271

2.

::]:

r-IIep

1
n
=1

S
Il
_
=

4
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I1.3.5. La démarche est analogue a celle de la ques-
tion I1.3.2. Nous détaillerons moins. Soit N € N.

[ v G0 [

" dx

_|_/1 +§ (_1)77,—1 b2 n 1 d
B 5,1 n® x.
n=N+1

QN

Avec la formule de Stirling, quand n augmente,

b — (2n)! V2m2n(2n)?me 2 1
" 22n(p))2 22n2rpn2ne=2n .\ /mn’
Donc, pour |z| < 1
G 1
b n — n
‘ 2n_1 nx 2 1 7L| |
1o, 1
S2n—1"  2mwn?’
Alors
—+oo _
avl< [ > [0 e
n=N+1
+oo
/ > 5 bidx
T n=N+1 n-

=2 0.
Z 2n—1 n N—+o0
n=N-+1

Par ailleurs, si n est impair, f,1137" dz = 0; et si
n=2poup =0,

1
2
/ P dr = .
—1 2p + 1
Finalement,

b
/1" dx“gz T

Commentaire. La aussi, nous verrons plus tard un
théoréme plus efficace.

I1.4. Pour tout |x| < 1, posons

w— 1/2 Zun <,01/2 Zvn
n=0
et Y(x an

Par unicité du développement en série entiere d’une
fonction, pour avoir un lien entre ces fonctions, il

4

4

suffit de trouver un lien entre leurs coefficients. Pour
tout n € N,
~ 1>

donc en multipliant par (—1)"71 b2 et sachant que
(1)t = (=1)"+ w, = %(vn + Up),

|d’0f1 Y =35(p12+P_1/2)

11
on—1 2

2n+1
2n—1

III.1.* Commentaire. L’énoncé propose une intégrale
a parametre dans laquelle les roles de x et t sont
inversés. Nous omettrons encore la vérification des
hypotheses concernant les fonctions de la variable
d’intégration, ici x.
Posons B =R, J =[-1,1] et

h:JxB—=R, (2,t) = V1+xsin?t.

Pour tout z € J, t — h(z,t) est continue sur R.
Pour tout (x,t) € J x B, |h(x,t)| < V2 ot z +— /2
est intégrable sur J.

Alors, pour tout ¢t € B, z — h(z,t) est intégrable
sur J, et

la fonction f est définie et continue sur R. Elle
est de plus clairement w-périodique et paire.

II1.2.* Pour tout = € J, t — h(z,t) est de classe ¢

sur R et

x sint cost
—(z,t) = —.
ot 14 xsin?t
Pour tout t € R, x — h(x,t) est intégrable sur J,
d’apreés ce qui précede. Pour tout (z,t) € J x R,
x > —1 donc

\/1+xsin2t > \/1 —sin?t = |cost]|.

Sit# 5 [r], cost # 0 donc
oh int 4
)] < |wsint cost| _ |zsint| < 1
ot |cos t]

Et sit = Z [r], cost = 0 donc |2 (z,t)| =0 < 1
Dans tous les cas, \dh( t)] < 1, donc 'hypothese
de domination est Verlﬁee car ¢ — 1 est bien-siir
intégrable sur J.

Alors pour t € B, x +—
sur J,

f est de classe €' sur R et pour tout t € B,

L on
Lot

oh

Si(z,t) est intégrable

£(t) = % (2, 1) da.




