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Corrigé du huitième devoir à la maison

I.1. Pour λ ∈ R, (−λ− 1)(−λ− 1 + 1) = λ(λ+ 1),
donc les équations (E−λ−1) et (Eλ) sont les mêmes.

I.2. On a y(x) =
+∞∑
n=0

anx
n. En reportant dans (Eλ),

x2 y′′(x) + xy′′(x) + 2xy′(x) + y′(x)
− λ(λ+ 1)y(x) = 0

⇐⇒ x2
+∞∑
n=2

n(n− 1)anx
n−2

+ x

+∞∑
n=1

(n+ 1)nan+1x
n−1

+ 2x
+∞∑
n=1

nanx
n−1 +

+∞∑
n=0

(n+ 1)an+1x
n

− λ(λ+ 1)
+∞∑
n=0

anx
n = 0

⇐⇒
+∞∑
n=0

n(n− 1)anx
n +

+∞∑
n=0

(n+ 1)nan+1x
n

+
+∞∑
n=0

2nanx
n +

+∞∑
n=0

(n+ 1)an+1x
n

− λ(λ+ 1)
+∞∑
n=0

anx
n = 0

⇐⇒
+∞∑
n=0

(
(n+ 1)2 an+1

+
(
n(n+ 1) − λ(λ+ 1)

)
an

)
xn = 0.

Par unicité du développement en série entière de la
fonction nulle, cette somme est nulle si et seulement
si tous ses coefficients sont nuls, c’est-à-dire si et
seulement si

∀n ∈ N, an+1 = (λ+ n+ 1)(λ− n)
(n+ 1)2 an.

I.3.1. Soit d ∈ N. Si (Eλ) admet une solution polyno-
miale de degré d, elle admet une solution développable
en série entière dont les termes sont nuls à partir du
rang d : pour n ⩾ d, an+1 = 0. En particulier

ad+1 = (λ+ d+ 1)(λ− d)
(d+ 1)2 ad = 0

donc d = λ car ad ̸= 0 et −λ − 1 ⩽ − 1
2 . Il est donc

nécessaire que λ soit un entier naturel.
Réciproquement, si λ ∈ N, la relation de la ques-

tion I.2 avec a0 réel définit une unique suite telle que
aλ ≠ 0, aλ+1 = 0 et donc pour n ⩾ λ + 1, an = 0.
Il s’ensuit que le polynôme

∑λ
n=0 anx

n est solution
de (Eλ).

Finalement, (Eλ) admet une solution de degré
d ∈ N si et seulement si λ = d.

I.3.2. Soit λ = d. D’après ce qui précède,
il existe une unique solution polynomiale de de-
gré d telle que a0 = 1.

Commentaire. Attention, le théorème de Cauchy-
Lipschitz ne s’applique pas ici, car on est sur un
intervalle, R, contenant 0, qui est une singularité
de (Eλ).

I.3.3. Si λ = 1, a0 = 1 et a1 = 2.
φ1 : x 7→ 2x+ 1 est solution sur R de (E1).

I.4. Dans la première égalité, on trouve a = 1 en
multipliant à gauche et à droite par x, puis en sub-
stituant 0 à x. De même, b = 1 en multipliant par
x+ 1 et en faisant x = −1 ; c = 4 en multipliant par
2x+ 1 et en faisant x = − 1

2 . Ainsi,

8x2 + 8x+ 1
x(x+ 1)(2x+ 1) = 1

x
+ 1
x+ 1 + 4

2x+ 1.

De même,
1

x(x+ 1)(2x+ 1)2 = 1
x

− 1
x+ 1 − 4

(2x+ 1)2 .

Résolvons (E1) par la méthode de variation de
la constante. Cherchons les solutions de (E1) sous
la forme y = λ φ1 où λ est une fonction deux
fois dérivable. Pour alléger les écritures, posons
A : x 7→ x(x+1), B = A′ : x 7→ 2x+1 et C : x 7→ −2.
Sur ]0,+∞[, comme φ1 est solution de (E1) et que
A > 0 et φ1 > 0,

Ay′′ +By′ + C y = 0
⇐⇒ A(λ′′φ1 + 2λ′φ′

1 + λφ′′
1)

+B (λ′φ1 + λφ′
1) + Cλφ1 = 0

⇐⇒ Aφ1λ
′′ + (2Aφ′

1 +Bφ1)λ′

+ (Aφ′′
1 +Bφ′

1 + Cφ1)︸ ︷︷ ︸
0

λ = 0

⇐⇒ λ′ = α exp
(

−
∫ 2Aφ′

1 +Bφ1

Aφ1

)
= α exp

(
−2
∫
φ′

1
φ1

−
∫
A′

A

)
= α exp(−2 lnφ1 − lnA)

= α

Aφ2
1
, α ∈ R.

D’après la question précédente, pour x > 0,
1

A(x)φ2
1(x) = 1

x(x+ 1)(2x+ 1)2

= 1
x

− 1
x+ 1 − 4

(2x+ 1)2 ,

donc il existe (α, β) ∈ R2 tel que

∀x > 0, λ(x) = α

(
ln x

x+ 1 + 2
2x+ 1

)
+ β.
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L’ensemble des solutions de (E1) sur ]0,+∞[ est{
x 7→ α

(
(2x+ 1) ln x

x+ 1 + 2
)

+ β (2x+ 1), (α, β) ∈ R2
}
.

I.4.1. D’après la question I.2, comme y n’est pas
polynomiale, pour n ∈ N, an ̸= 0 et∣∣∣∣an+1

an

∣∣∣∣ = |(λ+ n+ 1)(λ− n)|
(n+ 1)2 −−−−−→

n→+∞
1,

donc
∑
anx

n a pour rayon de convergence 1.

I.4.2. Ainsi, toutes les suites vérifiant la récurrence
de I.2 conduisent à une solution de (Eλ) développable
en série entière sur ]−1, 1[. La seule qui vaille 1 en 0
correspond à a0 = 1.

(Eλ) admet une unique solution φλ sur ]−1, 1[ dé-
veloppable en série entière et telle que φλ(0) = 1.

I.4.3. Pour λ = − 1
2 , an+1 = −

(n+ 1
2 )2

(n+ 1)2 an donc

an = −
(

2n− 1
2n

)2
an−1

= (−1)2
(

(2n− 1)(2n− 3)
(2n)(2n− 2)

)2
an−2

= (−1)n

(
(2n− 1)(2n− 3) · · · 3 · 1

(2n)(2n− 2) · · · 4 · 2

)2
a0

= (−1)n

(
(2n)!

22n (n!)2

)2
,

ce que prouve une récurrence immédiate.

Notation. Dorénavant, notons

bn = (2n)!
22n (n!)2 .

Ainsi,

∀x ∈ ]−1, 1[, φ−1/2(x) =
+∞∑
n=0

(−1)n b2
nx

n.

Pour λ = 1
2 , an+1 = −

(n+ 3
2 )(n− 1

2 )
(n+ 1)2 an donc

an = − (2n+ 1)
(2n)

(2n− 3)
(2n) an−1

= (−1)n (2n+ 1)(2n− 1) · · · 5 · 3
(2n)(2n− 2) · · · 4 · 2

× (2n− 3)(2n− 5) · · · 1 · (−1)
(2n)(2n− 2) · · · 4 · 2 a0

= (−1)n+1 (2n+ 1) (2n)!
22n (n!)2

× (2n− 1)
(2n− 1)

(2n− 3)(2n− 5) · · · 1
(2n)(2n− 2) · · · 4 · 2

= (−1)n+1 (2n+ 1)
(2n− 1) b

2
n,

ce que prouve une récurrence immédiate. Ainsi,

∀x ∈ ]−1, 1[,

φ1/2(x) =
+∞∑
n=0

(−1)n+1 (2n+ 1)
(2n− 1) b

2
nx

n.

Notation. Dans la suite, posons I = [0, π
2 ].

II.1.* Commentaire. Conformément au programme,
on n’insistera pas sur la continuité (par morceaux)
des fonctions dépendant de la variable t d’intégration.

Posons A = [−1,+∞[ et considérons

g : A× I → R, (x, t) 7→
√

1 + x sin2 t.

Pour tout t ∈ I, x 7→ g(x, t) est continue sur A. Soit
a > −1. Pour (x, t) ∈ [−1, a] × I,

|g(x, t)| ⩽
√

1 + max(1, a) = Ma,

où la fonction t 7→ Ma est intégrable sur I.
Alors pour tout x ∈ [−1, a], t 7→ g(x, t) est inté-

grable sur I et ψ est définie et continue sur [−1, a].
Comme c’est vrai pour tout a > −1,

ψ est définie et continue sur [−1,+∞[.

II.2.* Pour tout t ∈ I, x 7→ g(x, t) est de
classe C ∞ sur A′ = ]−1,+∞[. On exclut −1 car
x 7→ g(x, π

2 ) =
√

1 + x n’est pas dérivable en −1.
Pour tout p ∈ N∗ et (x, t) ∈ A′ × I,

∂pg

∂xp
(x, t) =

p−1∏
k=0

( 1
2 − k) sin2p t(1 + x sin2 t) 1

2 −p.

Soit a ∈ A′. Pour tout p ∈ N∗ et (x, t) ∈ [a,+∞[ × I,

∣∣∣∣∂pg

∂xp
(x, t)

∣∣∣∣ ⩽
∣∣∣∣∣
p−1∏
k=0

( 1
2 − k)

∣∣∣∣∣(1 + a) 1
2 −p = Na,

où t 7→ Na est intégrable sur I.
Alors, comme dans la question précédente, les

conclusions sont valides pour tout a > −1, donc sur
A′ tout entier : pour tout (p, x) ∈ N×A′, t 7→ ∂pg

∂xp (x, t)
est intégrable sur I,

ψ est de classe C ∞ sur A′, et pour tout
(p, x) ∈ N ×A′,

ψ(p)(x) = 2
π

∫ π/2

0

∂pg

∂xp
(x, t)dt.

Commentaire. Dans le programme ne figure pas de
théorème de la classe C ∞ pour les intégrales à para-
mètre. Mais en dominant toutes les dérivées partielles,
on voit qu’on peut appliquer directement le théorème
de la classe C k pour tout k ∈ N∗.
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II.3.1. Soit u ∈ ]−1, 1[. D’après le cours,

√
1 + u = (1 + u)1/2 =

+∞∑
n=0

(
1/2
n

)
xn.

Soit n ∈ N∗.(
1/2
n

)
= 1
n!

n−1∏
k=0

(
1
2 − k

)
= (−1)n−1

2n!

n−1∏
k=1

(
k − 1

2

)

= (−1)n−1

2n!2n−1

n−1∏
k=1

(2k − 1)

= (−1)n−1

2nn! (2n− 1)

n∏
k=1

(2k − 1)

= (−1)n−1

2nn! (2n− 1)

∏n
k=1(2k−1) ·

∏n
k=1(2k)∏n

k=1(2k)

= (−1)n−1

2nn! (2n− 1)
(2n)!
2nn! = (−1)n−1

2n− 1 bn.

Par ailleurs,
( 1/2

0
)

= 1 = b0. Ainsi,

∀u ∈ ]−1, 1[,
√

1 + u =
+∞∑
n=0

(−1)n−1

2n− 1 bnu
n.

II.3.2. Soit x ∈ ]−1, 1[. D’après ce qui précède, pour
tout t ∈ [0, π

2 ],√
1 + x sin2 t =

+∞∑
n=0

(−1)n−1

2n− 1 bn (x sin2 t)n

Soit N ∈ N. On peut écrire

ψ(x) = 2
π

∫ π/2

0

( +∞∑
n=0

(−1)n−1

2n− 1 bn (x sin2 t)n

)
dt

= 2
π

∫ π/2

0

(
N∑

n=0

(−1)n−1

2n− 1 bnx
n sin2n t

)
dt

+ 2
π

∫ π/2

0

( +∞∑
n=N+1

(−1)n−1

2n− 1 bnx
n sin2n t

)
dt

=
N∑

n=0

(−1)n−1

2n− 1 bnx
n

(
2
π

∫ π/2

0
sin2n tdt

)

+ 2
π

∫ π/2

0

( +∞∑
n=N+1

(−1)n−1

2n− 1 bnx
n sin2n t

)
dt︸ ︷︷ ︸

RN

.

D’une part, pour tout n ∈ N∗,∣∣∣∣∣ (−1)n−1

2n− 1 bnx
n

(
2
π

∫ π/2

0
sin2n tdt

)∣∣∣∣∣
⩽

1
2n− 1 bn |x|n 2

π

∫ π/2

0
|sin2n t|dt

⩽
1

2n− 1 bn |x|n.

Comme |x| < 1, d’après la question précédente, la
série entière ∑

n⩾0

(−1)n−1

2n− 1 bnx
n

converge absolument, donc il en est de même de la
série entière∑

n⩾0

(−1)n−1

2n− 1 bnx
n

(
2
π

∫ π/2

0
sin2n tdt

)

et

lim
N→+∞

N∑
n=0

(−1)n−1

2n− 1 bnx
n

(
2
π

∫ π/2

0
sin2n tdt

)

=
+∞∑
n=0

(−1)n−1

2n− 1 bnx
n

(
2
π

∫ π/2

0
sin2n tdt

)

D’autre part,

|RN | ⩽ 2
π

∫ π/2

0

+∞∑
n=N+1

∣∣∣∣ (−1)n−1

2n− 1 bnx
n sin2n t

∣∣∣∣dt
⩽

2
π

∫ π/2

0

( +∞∑
n=N+1

1
2n− 1 bn |x|n

)
dt

=
+∞∑

n=N+1

1
2n− 1 bn |x|n.

Comme |x| < 1, en invoquant la même série entière
que plus haut,

lim
N→+∞

+∞∑
n=N+1

1
2n− 1 bn |x|n = 0.

Alors, en passant à la limite sur N dans l’expres-
sion de ψ(x),

ψ(x) =
+∞∑
n=0

(−1)n−1

2n− 1 bn

(
2
π

∫ π/2

0
sin2n tdt

)
xn.

Commentaire. Nous verrons plus tard un théorème
qui permettra d’être bien plus efficace.

II.3.3. On reconnait les intégrales de Wallis :
∀n ∈ N, In = bn

π
2 .

Commentaire. Ce résultat n’est pas à connaitre et il
va de soi qu’il faut le démontrer. Mais je renvoie au
calcul effectué dans le cours.

Alors,

∀x ∈ ]−1, 1[, ψ(x) =
+∞∑
n=0

(−1)n−1

2n− 1 b2
nx

n.

II.3.4. Pour n ∈ N, bn ⩽ 1, car

(2n)! =
2n∏

k=1
k =

n∏
p=1

(2p) ·
n∏

p=1
(2p− 1)

⩽
n∏

p=1
(2p) ·

n∏
p=1

(2p) = 22n (n!)2.
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II.3.5. La démarche est analogue à celle de la ques-
tion II.3.2. Nous détaillerons moins. Soit N ∈ N.∫ 1

−1
ψ(x)dx =

N∑
n=0

(−1)n−1

2n− 1 b2
n

∫ 1

−1
xn dx

+
∫ 1

−1

( +∞∑
n=N+1

(−1)n−1

2n− 1 b2
nx

n

)
dx︸ ︷︷ ︸

QN

.

Avec la formule de Stirling, quand n augmente,

bn = (2n)!
22n (n!)2 ∼

√
2π2n(2n)2n e−2n

22n 2πnn2n e−2n
= 1√

πn
.

Donc, pour |x| ⩽ 1,∣∣∣∣ (−1)n−1

2n− 1 b2
nx

n

∣∣∣∣ = 1
2n− 1 b

2
n |x|n

⩽
1

2n− 1 b
2
n ∼ 1

2πn2 .

Alors

|QN | ⩽
∫ 1

−1

+∞∑
n=N+1

∣∣∣∣ (−1)n−1

2n− 1 b2
nx

n

∣∣∣∣dx
⩽
∫ 1

−1

+∞∑
n=N+1

1
2n− 1 b

2
n dx

= 2
+∞∑

n=N+1

1
2n− 1 b

2
n −−−−−→

N→+∞
0.

Par ailleurs, si n est impair,
∫ 1

−1 x
n dx = 0 ; et si

n = 2p où p ⩾ 0,∫ 1

−1
x2p dx = 2

2p+ 1 .

Finalement,∫ 1

−1
ψ(x)dx = −2

+∞∑
p=0

b2
2p

(2p+ 1)(4p− 1) .

Commentaire. Là aussi, nous verrons plus tard un
théorème plus efficace.

II.4. Pour tout |x| < 1, posons

φ−1/2(x) =
+∞∑
n=0

unx
n, φ1/2(x) =

+∞∑
n=0

vnx
n

et ψ(x) =
+∞∑
n=0

wnx
n.

Par unicité du développement en série entière d’une
fonction, pour avoir un lien entre ces fonctions, il

suffit de trouver un lien entre leurs coefficients. Pour
tout n ∈ N,

1
2n− 1 = 1

2

(
2n+ 1
2n− 1 − 1

)
donc en multipliant par (−1)n−1 b2

n et sachant que
(−1)n−1 = (−1)n+1, wn = 1

2 (vn + un),
d’où ψ = 1

2 (φ1/2 + φ−1/2).

III.1.* Commentaire. L’énoncé propose une intégrale
à paramètre dans laquelle les rôles de x et t sont
inversés. Nous omettrons encore la vérification des
hypothèses concernant les fonctions de la variable
d’intégration, ici x.

Posons B = R, J = [−1, 1] et

h : J ×B → R, (x, t) 7→
√

1 + x sin2 t.

Pour tout x ∈ J , t 7→ h(x, t) est continue sur R.
Pour tout (x, t) ∈ J × B, |h(x, t)| ⩽

√
2 où x 7→

√
2

est intégrable sur J .
Alors, pour tout t ∈ B, x 7→ h(x, t) est intégrable

sur J , et
la fonction f est définie et continue sur R. Elle
est de plus clairement π-périodique et paire.

III.2.* Pour tout x ∈ J , t 7→ h(x, t) est de classe C 1

sur R et
∂h

∂t
(x, t) = x sin t cos t√

1 + x sin2 t
.

Pour tout t ∈ R, x 7→ h(x, t) est intégrable sur J ,
d’après ce qui précède. Pour tout (x, t) ∈ J × R,
x ⩾ −1 donc√

1 + x sin2 t ⩾
√

1 − sin2 t = |cos t|.

Si t ̸= π
2 [π], cos t ̸= 0 donc∣∣∣∣∂h∂t (x, t)

∣∣∣∣ ⩽ |x sin t cos t|
|cos t| = |x sin t| ⩽ 1.

Et si t = π
2 [π], cos t = 0 donc | ∂h

∂t (x, t)| = 0 ⩽ 1.
Dans tous les cas, | ∂h

∂t (x, t)| ⩽ 1, donc l’hypothèse
de domination est vérifiée car x 7→ 1 est bien-sûr
intégrable sur J .

Alors pour t ∈ B, x 7→ ∂h
∂t (x, t) est intégrable

sur J ,
f est de classe C 1 sur R et pour tout t ∈ B,

f ′(t) = 1
2

∫ 1

−1

∂h

∂t
(x, t)dx.
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