Neuvième devoir à la maison

[MP05] Durée: 3 heures Calculatrices interdites

Avertissement : dans ce problème, apparaissent de nombreuses intégrales impropres. On prendra soin de justifier systématiquement l'intégrabilité des fonctions considérées même lorque ce n'est pas explicitement demandé.

I. Préliminaires

- 1. Montrer les inégalités suivantes :
- (1) $\forall t \in]-1, +\infty[, \ln(1+t) \leqslant t]$
- (2) $\forall t \in]0, +\infty[, t \ln(t) \geqslant -\frac{1}{e}]$
- 2. Soit ψ une bijection de l'intervalle ouvert I sur l'intervalle ouvert J. Si ψ est de classe \mathscr{C}^1 sur I, donner une condition nécessaire et suffisante pour que ψ^{-1} soit aussi de classe \mathscr{C}^1 sur J. On dit alors que ψ est un \mathscr{C}^1 -difféomorphisme de I sur J. Dans ce cas, rappeler l'expression de la dérivée de ψ^{-1} .

II. Construction d'une application particulière

On note H l'ensemble des fonctions f strictement positives, continues sur \mathbb{R} , pour lesquelles il existe $\rho>0$ (dépendant de f) tel que, pour tout réel x:

(A)
$$0 < f(x) \le \frac{1}{\rho} \exp\left(\left(\frac{1}{2} - \rho\right)x^2\right)$$

On note H_0 , le sous-ensemble de H des fonctions f telles que :

$$\int_{-\infty}^{+\infty} f(u) e^{-u^2/2} du = \int_{-\infty}^{+\infty} e^{-u^2/2} du = \sqrt{2\pi}.$$

Dans tout le reste de l'énoncé, f est un élément de H_0 .

3. Soit F_f définie par

$$F_f(x) = \int_{-\infty}^x f(u) e^{-u^2/2} du.$$

En particulier,

$$F_1(x) = \int_{-\infty}^x e^{-u^2/2} du.$$

Montrer que F_f est un \mathscr{C}^1 -difféomorphisme de \mathbb{R} sur $]0, \sqrt{2\pi}[$.

4. Montrer qu'il existe une unique fonction φ de \mathbb{R} dans \mathbb{R} telle que, pour tout réel x, on ait

$$\int_{-\infty}^{\varphi(x)} f(u) e^{-u^2/2} du = \int_{-\infty}^{x} e^{-u^2/2} du.$$

- 5. Montrer que φ est monotone et que φ est un \mathscr{C}^1 -difféomorphisme de \mathbb{R} sur \mathbb{R} .
- 6. Pour tout réel x, calculer

$$\ln(\varphi'(x)) + \ln(f(\varphi(x))) - \frac{1}{2}\varphi(x)^{2},$$

et $\ln((\varphi^{-1})'(x)) - \ln(f(x)) - \frac{1}{2}\varphi^{-1}(x)^{2}.$

7. Soit h une fonction continue par morceaux de \mathbb{R} dans \mathbb{R} telle que la fonction $u\mapsto h(u)\,f(u)\,e^{-u^2/2}$ soit intégrable sur \mathbb{R} .

Montrer l'identité suivante :

$$\int_{-\infty}^{+\infty} h(u)f(u)e^{-u^2/2} du = \int_{-\infty}^{+\infty} h(\varphi(u))e^{-u^2/2} du.$$

8. Montrer qu'il existe un réel A > 0 tel que pour tout réel $x \ge A$, on ait :

$$\int_{x}^{x+1} \varphi^{2}(u) e^{-u^{2}/2} du \geqslant \varphi^{2}(x) e^{-(x+1)^{2}/2}.$$

9. Montrer qu'il existe un réel B > 0 tel que pour tout réel $|u| \ge B$, on ait :

$$|\varphi(u)| \leqslant e^{(|u|+1)^2/4}.$$

10. Déterminer une primitive de la fonction

$$u \mapsto (u \varphi(u) - u^2 - \varphi'(u) + 1) e^{-u^2/2}.$$

11. Calculer l'intégrale suivante :

$$I = \int_{-\infty}^{+\infty} (u \varphi(u) - u^2 - \varphi'(u) + 1) e^{-u^2/2} du.$$

III. Une inégalité intéressante

On introduit les notations suivantes :

$$E(f) = \int_{-\infty}^{+\infty} f(u) \ln(f(u)) e^{-u^2/2} du,$$

$$\Phi(f) = \frac{1}{2} \int_{-\infty}^{+\infty} |u - \varphi(u)|^2 e^{-u^2/2} du.$$

12. Justifier la convergence de ces deux intégrales.

13. Montrer l'identité :

$$E(f) = \int_{-\infty}^{+\infty} \ln(f(\varphi(u))) e^{-u^2/2} du.$$

14. Montrer l'égalité suivante :

(3)
$$E(f) - \Phi(f)$$

$$= \int_{-\infty}^{+\infty} \left(\varphi'(u) - 1 - \ln(\varphi'(u)) \right) e^{-u^2/2} du.$$

15. Quelle est la relation d'ordre entre $\Phi(f)$ et E(f)?

16. Déterminer les fonctions telles que $E(f) = \Phi(f)$.

Fin du problème

Le problème du transport de Monge consiste à optimiser le coût global du transport d'une répartition de masse vers une autre. Dans le cas uni-dimensionnel que nous venons de traiter, on se donne un tas de sable infiniment fin dont $le\ poids\ entre\ les\ abscisses\ u-du\ et\ u+du$ est donné par $2 \exp(-u^2/2) du$. On veut le déplacer vers un tas de sable de densité linéique $f(u) \exp(-u^2/2)$. Cela est représenté par une application s de \mathbb{R} dans \mathbb{R} qui pour tout réel u donne l'abscisse, s(u), du grain situé en u après le transport. On montre que l'application φ déterminée en question 4 minimise le coût du transport défini par $\int_{-\infty}^{+\infty} |u - s(u)|^2 e^{-u^2/2} du$, parmi toutes les fonctions s possibles. L'objectif de ce problème est de majorer ce coût minimal par une quantité qui ne dépend que de f et qui ne nécessite pas le calcul de φ . Le nombre E(f)est appelé l'entropie de Boltzmann.