Premier devoir de révision

[MP10] Durée: 3h

Théorème de la limite centrale

NOTATIONS

On introduit les trois espaces vectoriels sur \mathbb{R} de fonctions suivants.

— $\mathscr{C}_0(\mathbb{R})$, l'espace des fonctions continues u de \mathbb{R} dans \mathbb{R} telles que

$$\lim_{x\to -\infty} u(x) = 0 = \lim_{x\to +\infty} u(x).$$

On rappelle qu'une telle fonction u est nécessairement bornée sur \mathbb{R} .

 $-\mathscr{C}_0^{\infty}(\mathbb{R})$, l'espace des fonctions de classe \mathscr{C}^{∞} $(\operatorname{sur} \mathbb{R}) u \operatorname{de} \mathbb{R} \operatorname{dans} \mathbb{R} \operatorname{telles} \operatorname{que}$

$$\forall k \in \mathbb{N}, \ \lim_{x \to -\infty} u^{(k)}(x) = 0 = \lim_{x \to +\infty} u^{(k)}(x).$$

On a noté $u^{(k)}$ la dérivée k-ième de u.

 $\mathscr{P}(\mathbb{R})$, l'espace des fonctions continues positives et bornées de $\mathbb R$ dans $\mathbb R$ dont l'intégrale sur $\mathbb R$ est égale à 1.

On munit $\mathscr{C}_0(\mathbb{R})$ de la norme de la convergence uniforme $\|\cdot\|_{\infty}$: plus précisément, pour toute fonction $u \in \mathscr{C}_0(\mathbb{R})$, on pose

$$||u||_{\infty} = \sup_{x \in \mathbb{R}} |u(x)|.$$

On pourra utiliser librement le théorème de Fubini admis ci-dessous:

Théorème 1. (Fubini). Soit $(x,y) \mapsto F(x,y)$ une fonction continue de \mathbb{R}^2 dans \mathbb{R} . On suppose que Fvérifie les trois propriétés suivantes.

- 1. Pour tous réels x,y, les deux intégrales $\int_{-\infty}^{+\infty} |F(v,y)| \, \mathrm{d}v \ et \ \int_{-\infty}^{+\infty} |F(x,t)| \, \mathrm{d}t \ convergent.$

$$y \mapsto \int_{-\infty}^{+\infty} |F(x,y)| \, \mathrm{d}x, \quad x \mapsto \int_{-\infty}^{+\infty} |F(x,y)| \, \mathrm{d}y,$$
$$y \mapsto \int_{-\infty}^{+\infty} F(x,y) \, \mathrm{d}x, \quad x \mapsto \int_{-\infty}^{+\infty} F(x,y) \, \mathrm{d}y$$
sont toutes continues sur \mathbb{R} .

3. $y \mapsto \int_{-\infty}^{+\infty} |F(x,y)| dx$ est intégrable sur \mathbb{R} , c'est à dire que l'intégrale

dire que l'intégrale
$$\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} |F(x,y)| \, \mathrm{d}x \right) \mathrm{d}y$$
converge.

Alors, dans ce cas, $y \mapsto \int_{-\infty}^{+\infty} F(x,y) dx$ et $x\mapsto \int_{-\infty}^{+\infty} F(x,y)\,\mathrm{d}y$ sont intégrables sur $\mathbb R$ et leurs intégrales sur \mathbb{R} sont égales. Autrement dit, on peut intervertir les deux intégrales :

$$\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} F(x, y) \, \mathrm{d}x \right) \mathrm{d}y$$
$$= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} F(x, y) \, \mathrm{d}y \right) \mathrm{d}x.$$

I. Préliminaires

Pour f et g appartenant respectivement à $\mathscr{P}(\mathbb{R})$ et $\mathscr{C}_0(\mathbb{R})$, on définit le produit de convolution f * gpar la formule

$$\forall x \in \mathbb{R}, \ f * g(x) = \int_{-\infty}^{+\infty} f(t) g(x - t) dt.$$

On définit f * g(x) par la même formule si $f \in \mathscr{C}_0(\mathbb{R})$ et $g \in \mathscr{P}(\mathbb{R})$.

Q1 Soient $f \in \mathscr{P}(\mathbb{R})$ et $g \in \mathscr{C}_0(\mathbb{R})$. Montrer que l'intégrale $\int_{-\infty}^{+\infty} f(t) g(x-t) dt$ converge pour tout réel x. Puis montrer que f * g définit une fonction continue sur \mathbb{R} . (On pourra utiliser le théorème de continuité sous le signe f et on vérifiera avec soin que les conditions de validité sont remplies). Vérifier de plus que

$$\forall x \in \mathbb{R}, \ f * g(x) = g * f(x).$$

Q2 Montrer que $\lim_{x \to +\infty} f * g(x) = 0$. (On considérera une suite réelle quelconque $(x_n)_{n\in\mathbb{N}}$ tendant vers $+\infty$. On vérifiera avec soin qu'on peut appliquer le théorème de convergence dominée pour étudier $\lim_{n\to+\infty} f * g(x_n)$). Montrer de même que $\lim_{x \to -\infty} f * g(x) = 0.$

Q3 Soient f et g appartenant à $\mathscr{P}(\mathbb{R})$. Montrer alors que f * g définit une fonction de $\mathscr{P}(\mathbb{R})$. Plus précisément, montrer que f * q définit une fonction continue sur \mathbb{R} , bornée, positive et d'intégrale égale à 1. (On appliquera le théorème de Fubini à la fonction $(x,y) \mapsto f(y)g(x-y)$ et on pourra se contenter de ne vérifier que les conditions 1) et 3)).

Dans la suite, on admettra et on utilisera librement le résultat suivant. Si f et g appartiennent à $\mathscr{P}(\mathbb{R})$ et u est une fonction de $\mathscr{C}_0(\mathbb{R})$ alors,

$$f * (g * u) = (f * g) * u.$$

Soient f_1, \ldots, f_n des fonctions de $\mathscr{P}(\mathbb{R})$. On définit alors le produit de convolution $f_1 * \cdots * f_n$ par récurrence comme suit :

$$\forall k \in \{3, \dots, n\},\$$

 $f_1 * \dots * f_k = (f_1 * \dots * f_{k-1}) * f_k,$

Il est clair que $f_1 * \cdots * f_n$ est une fonction de $\mathscr{P}(\mathbb{R})$. Dans la suite, on notera f^{*n} la fonction $f * \cdots * f$, la fonction f intervenant n fois.

II. Une classe d'opérateurs $\operatorname{sur}\,\mathscr{C}_0(\mathbb{R})$

Soit f une fonction de $\mathscr{P}(\mathbb{R})$. On lui associe l'opérateur T_f agissant sur $\mathscr{C}_0(\mathbb{R})$ défini pour tout $u\in\mathscr{C}_0(\mathbb{R})$ par

$$T_f(u) = f * u.$$

D'après Q.1 et Q.2, T_f définit un endomorphisme de $\mathscr{C}_0(\mathbb{R})$.

 $\mathbf{Q4}$ Soit f une fonction de $\mathscr{P}(\mathbb{R}).$ Prouver que pour tout $u\in\mathscr{C}_0(\mathbb{R}),$

$$||T_f(u)||_{\infty} \leqslant ||u||_{\infty}.$$

Q5 Soient f et g deux fonctions de $\mathscr{P}(\mathbb{R})$. Prouver que pour toute fonction u de $\mathscr{C}_0(\mathbb{R})$

$$T_f T_q(u) = T_q T_f(u),$$

où $T_f T_g$ désigne la composée des opérateurs T_f et T_g .

Q6 Soient f_1, f_2, g_1, g_2 des fonctions de $\mathscr{P}(\mathbb{R})$. Prouver que pour tout $u \in \mathscr{C}_0(\mathbb{R})$,

$$||T_{f_1}T_{f_2}(u) - T_{g_1}T_{g_2}(u)||_{\infty}$$

$$\leq ||T_{f_1}(u) - T_{g_1}(u)||_{\infty} + ||T_{f_2}(u) - T_{g_2}(u)||_{\infty}.$$

Q7 Soient f et g des fonctions de $\mathscr{P}(\mathbb{R})$. Prouver que si $u \in \mathscr{C}_0(\mathbb{R})$, alors pour tout $n \in \mathbb{N}^*$,

$$||(T_f)^n(u) - (T_g)^n(u)||_{\infty} \le n ||T_f(u) - T_g(u)||_{\infty}.$$

III. Lois normales

On introduit pour tout réel h > 0 la fonction

$$g_h(x) = \frac{1}{h\sqrt{2\pi}}e^{-\frac{x^2}{2h^2}}, \ x \in \mathbb{R},$$

dite loi normale de paramètre h. On admet que g_1 est une fonction de $\mathscr{P}(\mathbb{R})$.

Q8 Pour tout h > 0, montrer que g_h est une fonction de $\mathscr{P}(\mathbb{R})$, puis calculer les deux intégrales suivantes :

$$\int_{-\infty}^{+\infty} x g_h(x) dx \text{ et } \int_{-\infty}^{+\infty} x^2 g_h(x) dx.$$

Soient $h_1 > 0$ et $h_2 > 0$ deux réels strictement positifs. On admettra que

$$g_{h_1} * g_{h_2} = g_h$$

où
$$h = \sqrt{h_1^2 + h_2^2}$$
.

Q9 Soit h > 0. Établir les deux égalités suivantes entre opérateurs.

$$T_{g_h} = \left(T_{g_{\frac{h}{\sqrt{n}}}}\right)^n = T_{\left(g_{\frac{h}{\sqrt{n}}}\right)^{*n}}.$$

IV. Convergence faible sur $\mathscr{P}(\mathbb{R})$

Définition. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de $\mathscr{P}(\mathbb{R})$. On dira que (f_n) converge faiblement vers f, f étant une fonction de $\mathscr{P}(\mathbb{R})$, si pour toute fonction u de $\mathscr{C}_0(\mathbb{R})$,

$$\lim_{n \to +\infty} ||T_{f_n}(u) - T_f(u)||_{\infty} = 0.$$

Soit u une fonction de $\mathscr{C}_0(\mathbb{R})$. On fixe un réel h > 0 et on considère la fonction $T_{g_h}(u) : \mathbb{R} \to \mathbb{R}$ définie pour x réel par

$$(g_h * u)(x) = T_{g_h}(u)(x) = \int_{-\infty}^{+\infty} g_h(t) u(x - t) dt$$
$$= \int_{-\infty}^{+\infty} g_h(x - t) u(t) dt$$

où g_h a été défini au début de la partie III.

Q10 Soit h strictement positif fixé et $k \in \mathbb{N}$. Démontrer qu'il existe un polynôme $P_{k,h}$ dont on précisera le degré tel que

$$\forall x \in \mathbb{R}, \ \frac{\mathrm{d}^k g_h}{\mathrm{d} x^k}(x) = P_{k,h}(x) e^{-\frac{x^2}{2h^2}}.$$

Q11 Soient $h, a \in \mathbb{R}^{+*}$ et k un entier positif ou nul. Prouver qu'il existe une fonction $\phi_k : \mathbb{R} \to [0, +\infty[$ continue par morceaux et intégrable sur \mathbb{R} telle que :

$$\forall x \in [-a, a], \forall t \in \mathbb{R}, \left| P_{k,h}(x - t) e^{-\frac{(x - t)^2}{2h^2}} \right| \leqslant \phi_k(t).$$

La fonction ϕ_k ne dépend que de h, a et k. (On pourra majorer $\left|P_{k,h}(x-t)\,e^{-\frac{(x-t)^2}{4h^2}}\right|$ indépendamment de (x-t). Ensuite on pourra majorer convenablement $e^{-\frac{(x-t)^2}{4h^2}}$ pour $|t|\geqslant 2a$ et $x\in [-a,a]$).

Q12 Soient h strictement positif fixé et $u \in \mathscr{C}_0(\mathbb{R})$. Démontrer que $T_{g_h}(u)$ est une fonction de classe \mathscr{C}^1 sur \mathbb{R} . Puis montrer que $T_{g_h}(u)$ est de classe \mathscr{C}^{∞} sur \mathbb{R} .

Q13 Pour h strictement positif fixé et $u \in \mathscr{C}_0(\mathbb{R})$, démontrer que $T_{g_h}(u)$ est une fonction de $\mathscr{C}_0^{\infty}(\mathbb{R})$.

 $\mathbf{Q14}$ Soit α un réel strictement positif. Déterminer

$$\lim_{h\to 0^+} \int_{-\infty}^{-\alpha} g_h(t) dt \text{ et } \lim_{h\to 0^+} \int_{\alpha}^{+\infty} g_h(t) dt.$$

Q15 Soit $u \in \mathscr{C}_0(\mathbb{R})$. Prouver que

$$\lim_{h \to 0^+} ||T_{g_h}(u) - u||_{\infty} = 0.$$

Pour cela, on utilisera la question précédente ainsi que le résultat admis suivant, valable pour tout $u \in \mathscr{C}_0(\mathbb{R})$:

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x, y \in \mathbb{R},$$

 $|x - y| \le \alpha \Longrightarrow |u(x) - u(y)| \le \varepsilon.$

Q16 Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de $\mathscr{P}(\mathbb{R})$ et f une fonction de $\mathscr{P}(\mathbb{R})$. On suppose que pour toute fonction u de $\mathscr{C}_0^{\infty}(\mathbb{R})$,

$$\lim_{n \to +\infty} ||T_{f_n}(u) - T_f(u)||_{\infty} = 0.$$

Prouver alors que (f_n) converge faiblement vers f. (On pourra utiliser les questions 4 et 15).

Dans la suite, f est une fonction de $\mathscr{P}(\mathbb{R})$ telle que $x \mapsto x^2 f(x)$ est aussi dans $\mathscr{P}(\mathbb{R})$. On admet que l'intégrale $\int_{-\infty}^{+\infty} t f(t) dt$ converge et on supposera que $\int_{-\infty}^{+\infty} t f(t) dt = 0$. Pour tout entier n strictement positif, on introduit les deux fonctions f_n et $f_n^\#$ définies par :

$$\forall x \in \mathbb{R}, \ f_n(x) = \sqrt{n} f(\sqrt{n} x), \ f_n^{\#}(x) = n x^2 f_n(x).$$

On admettra que f_n et $f_n^{\#}$ appartiement à $\mathscr{P}(\mathbb{R})$.

Q17 Soit $x \in \mathbb{R}$ et $u \in \mathscr{C}_0^\infty(\mathbb{R})$. Vérifier que $t \mapsto \frac{u(x-t)-u(x)+t\,u'(x)}{t^2}$

se prolonge continument en t=0. Puis montrer que pour tout $n\in\mathbb{N}^*$ on a :

$$n\left(T_{f_n}(u)(x) - u(x)\right) - \frac{1}{2}u''(x)$$

$$= \int_{-\infty}^{+\infty} \left(\frac{u(x-t) - u(x) + tu'(x)}{t^2} - \frac{1}{2}u''(x)\right) f_n^{\#}(t) dt,$$

où u' désigne la dérivée première de u et u'' désigne la dérivée seconde de u.

Q18 Démontrer que pour toute fonction u de $\mathscr{C}_0^{\infty}(\mathbb{R})$,

$$\lim_{n \to +\infty} \left\| n \left(T_{f_n}(u) - u \right) - \frac{1}{2} u'' \right\|_{\infty} = 0.$$

(On pourra considérer les trois intégrales $\int_{-\infty}^{-\alpha}$, $\int_{-\alpha}^{\alpha}$, $\int_{\alpha}^{+\infty}$, avec $\alpha > 0$ bien choisi, dans le second membre de la formule de la question précédente).

Q19 Montrer que pour toute fonction u de $\mathscr{C}_0^{\infty}(\mathbb{R})$,

$$\lim_{n \to +\infty} ||T_{f_n}^n(u) - T_{g_1}(u)||_{\infty} = 0,$$

où g_1 a été définie au début de la partie III. (On pourra utiliser les questions 7, 9 et 18). Conclure que la suite (f_n^{*n}) converge faiblement vers g_1 ; on rappelle que la notation f^{*n} a été définie juste après la question 3.

FIN DU PROBLÈME

Ce dernier résultat intervient en théorie des probabilités. Il constitue une version faible du théorème de la limite centrale dans le cas de variables aléatoires à densité de probabilité f continue bornée sur \mathbb{R} .