Quatrième devoir de révision

[CS03]

Notations, définitions et rappels

Si $n \in \mathbb{N}$, soit $\mathbb{C}_n[X]$ l'espace des polynômes complexes de degré inférieur ou égal à n. Pour P dans $\mathbb{C}[X]$, soit T(P) le polynôme P(X+1). L'application T ainsi définie est clairement un endomorphisme de $\mathbb{C}[X]$. De plus, si $n \in \mathbb{N}$, $\mathbb{C}_n[X]$ est stable par T et on note T_n l'endomorphisme de $\mathbb{C}_n[X]$ induit par T.

Soit $(H_i)_{i\in\mathbb{N}}$ la suite des polynômes de Hilbert, définie par :

$$H_0 = 1 \text{ et } \forall i \in \mathbb{N}^*, \ H_i = \frac{1}{i!} \prod_{k=0}^{i-1} (X - k).$$

Si $R \in \mathbb{R}_+^*$, soient :

$$D_R = \{ z \in \mathbb{C}, \ |z| < R \},$$

$$\overline{D_R} = \{ z \in \mathbb{C}, \ |z| \le R \}$$
et $C_R = \{ z \in \mathbb{C}, \ |z| = R \}.$

On convient d'autre part que $D_{\infty} = \mathbb{C}$. Pour R dans $\mathbb{R}_+^* \cup \{\infty\}$, soit E_R l'espace vectoriel des fonctions de D_R dans \mathbb{C} de la forme $z \mapsto \sum_{n=0}^{+\infty} a_n z^n$ où la série entière $\sum_{n=0}^{+\infty} a_n z^n$ a un rayon de convergence supérieur ou égal à R. L'espace E_{∞} est appelé espace des fonctions entières.

On pourra utiliser la formule de Stirling:

si
$$n \to +\infty$$
, $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

Objectif du problème, dépendance des parties

La partie I étudie les polynômes de Hilbert, ce qui permet notamment de déterminer les polynômes P de $\mathbb{C}[X]$ tels que $P(\mathbb{N}) \subset \mathbb{Z}$. La partie II est complètement indépendante de I. Elle a pour but d'établir quelques propriétés des séries entières utilisées dans la partie III, laquelle montre que toute fonction entière vérifiant une certaine condition asymptotique est un polynôme. Le résultat obtenu est dû à Georg Pólya (1915). La partie III utilise II et la dernière question de I.

Partie I - Polynômes de Hilbert

Soit n dans \mathbb{N} .

I.A - Inversion d'une matrice

I.A.1) Écrire la matrice M_n de T_n dans la base $(1, X, \dots, X^n)$ de $\mathbb{C}_n[X]$.

I.A.2) Vérifier que M_n est inversible; expliciter M_n^{-1} .

I.B - Propriétés de la suite $(H_i)_{i\in\mathbb{N}}$

I.B.1) Montrer que $(H_i)_{0 \leq i \leq n}$ est une base de $\mathbb{C}_n[X]$.

I.B.2) Si $j \in \mathbb{Z}$ et $i \in \mathbb{N}^*$, donner une expression simple de $H_i(j)$ montrant que $H_i(j)$ est dans \mathbb{Z} . On distinguera les trois cas : j < 0, $0 \le j \le i - 1$ et $j \ge i$.

I.C - Polynômes de $\mathbb{C}[X]$ tels que $P(\mathbb{N}) \subset \mathbb{Z}$

Soit P dans $\mathbb{C}_n[X]$. On décompose P sur $(H_i)_{0 \leqslant i \leqslant n}$ en $P = \sum_{i=0}^n a_i H_i$.

I.C.1) Vérifier l'égalité suivante :

$$\begin{pmatrix} P(0) \\ \vdots \\ P(n) \end{pmatrix} = {}^{t}M_{n} \begin{pmatrix} a_{0} \\ \vdots \\ a_{n} \end{pmatrix}$$

où ${}^{t}M_{n}$ est la transposée de la matrice M_{n} .

I.C.2) Établir:

$$\forall i \in \{0, \dots, n\}, \ a_i = \sum_{j=0}^{i} (-1)^{i-j} \binom{i}{j} P(j).$$

Si
$$i \ge n+1$$
, que vaut $\sum_{j=0}^{i} (-1)^{i-j} {i \choose j} P(j)$?

 ${\rm I.C.3})$ Montrer que les trois conditions suivantes sont équivalentes :

- a) $\forall i \in \{0, \dots, n\}, P(i) \in \mathbb{Z},$
- b) $\forall i \in \{0, \dots, n\}, \ a_i \in \mathbb{Z},$
- c) $P(\mathbb{Z}) \subset \mathbb{Z}$.

En particulier les polynômes P de $\mathbb{C}[X]$ tels que $P(\mathbb{N}) \subset \mathbb{Z}$ sont les combinaisons linéaires à coefficients dans \mathbb{Z} des polynômes de Hilbert.

I.D - Description des suites de la forme $(P(j))_{j\in\mathbb{N}}$ où P est un polynôme

Soit $(u_j)_{j\in\mathbb{N}}$ une suite complexe. Démontrer que les deux conditions suivantes sont équivalentes :

a) il existe $P \in \mathbb{C}_n[X]$ tel que : $\forall j \in \mathbb{N}, \ u_j = P(j),$

b)
$$\forall i \in \mathbb{N}, i \geqslant n+1 \Longrightarrow \sum_{j=0}^{i} (-1)^{i-j} \binom{i}{j} u_j = 0.$$

Partie II – Quelques propriétés des séries entières

Dans toute cette partie, on fixe R dans $\mathbb{R}_+^* \cup \{+\infty\}$, f dans E_R , ω dans D_R et r dans $]|\omega|$, R[. Pour z dans D_R , on écrit donc :

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n$$

où la série entière $\sum_{n=0}^{+\infty} a_n z^n$ a un rayon de convergence supérieur ou égal à R.

Pour $k \in \mathbb{N}^*$, on note $f^{(k)}$ la fonction définie pour $z \in D_R$ par :

$$f^{(k)}(z) = \sum_{n=k}^{+\infty} n(n-1) \cdots (n-k+1) a_n z^{n-k}$$

(on sait que cette série entière a même rayon de convergence que la série entière initiale).

II.A - Représentation intégrale de $f(\omega)$ à partir des valeurs de f sur C_r

II.A.1) Si $p \in \mathbb{N}$, prouver :

$$\int_{-\pi}^{\pi} f(r e^{it}) e^{-ipt} dt = 2\pi a_p r^p.$$

II.A.2) Montrer:

$$f(\omega) = \int_{-\pi}^{\pi} \frac{r e^{it}}{r e^{it} - \omega} f(r e^{it}) \frac{\mathrm{d}t}{2\pi}.$$

Indication : on pourra partir de :

$$\frac{re^{it}}{re^{it} - \omega} = \sum_{p=0}^{+\infty} \left(\frac{\omega}{re^{it}}\right)^p.$$

II.B - Principe du maximum

II.B.1) Justifier la définition de

$$M_f(r) = \max \{|f(z)|, z \in C_r\}.$$

II.B.2) Montrer :
$$|f(\omega)| \leq \frac{r}{r - |\omega|} M_f(r)$$
.

II.B.3) Montrer : $|f(\omega)| \leq M_f(r)$.

Indication : si $p \in \mathbb{N}^*$, on pourra appliquer, avec justification, le résultat de II.B.2 à f^p puis faire tendre p vers $+\infty$.

II.C - Division de $f(z)-f(\omega)$ par $z-\omega$ pour f dans E_R

II.C.1) Si $j \in \mathbb{N}$, montrer la convergence de la série de terme général $a_n \omega^{n-1-j}$ pour $n \ge j+1$. On pose :

$$b_j = \sum_{n=j+1}^{+\infty} a_n \, \omega^{n-1-j}.$$

II.C.2) Montrer que, lorsque $j \to +\infty$,

$$b_j = \mathcal{O}\left(\frac{1}{r^j}\right).$$

II.C.3) Montrer que le rayon de convergence de la série entière $\sum_{j=0}^{+\infty} b_j z^j$ est supérieur ou égal à R. Pour $z \in D_R$, on pose :

$$g(z) = \sum_{j=0}^{+\infty} b_j z^j.$$

Vérifier : $\forall z \in D_R, (z - \omega) g(z) = f(z) - f(\omega).$

II.D - Minoration de $M_f(r)$ à l'aide des zéros de f

On suppose que $p \in \mathbb{N}^*$, que f s'annule en p points distincts z_1, \ldots, z_p de $\overline{D_r} \setminus \{0\}$.

II.D.1) Montrer qu'il existe F dans E_R telle que :

$$\forall z \in D_R, \ F(z) \times \prod_{j=1}^p (z - z_j) = f(z) \times \prod_{j=1}^p (r^2 - \overline{z_j} z).$$

II.D.2) Si
$$j \in \{1, \dots, p\}$$
 et $z \in C_r \setminus \{z_j\}$, que vaut
$$\left| \frac{r^2 - \overline{z_j} z}{z - z_i} \right| ?$$

II.D.3) En appliquant II.B.3 à F au point $\omega=0,$ montrer :

$$M_f(r) \times \left| \prod_{j=1}^p z_j \right| \geqslant |f(0)| r^p.$$

II.D.4) On suppose $f(0) = \cdots = f^{(k-1)}(0) = 0$ où $k \in \mathbb{N}^*$. Prouver :

$$M_f(r) \times \left| \prod_{j=1}^p z_j \right| \geqslant \frac{\left| f^{(k)}(0) \right|}{k!} r^{p+k}.$$

II.E - Étude asymptotique d'une fonction entière nulle sur $\mathbb N$

On suppose que $R=+\infty,\,c\in]0,e[,\,f$ est nulle sur $\mathbb N$ et que lorsque $r\to\infty,\,M_f(r)=\mathrm O(c^r).$

Montrer que f = 0.

Indication: on supposera par l'absurde $f \neq 0$, on appliquera II.D.4 avec $k = \min \{i \in \mathbb{N}, f^{(i)}(0) \neq 0\}, r = p, z_1 = 1, \ldots, z_p = p$ et on fera tendre p vers $+\infty$.

Partie III - Théorème de Pólya

Soit f dans E_{∞} .

III.A - Majoration de
$$\left|\sum_{k=0}^{n} (-1)^k \binom{n}{k} f(k)\right|$$

Soient n dans \mathbb{N}^* et r un réel tel que r > n.

III.A.1) Décomposer en éléments simples la fraction rationnelle :

$$F_n = \frac{n!}{X(X-1)\cdots(X-n)}.$$

III.A.2) À l'aide de II.A.2, prouver :

$$\int_{-\pi}^{\pi} \frac{n! f(re^{it})}{(re^{it} - 1) \cdots (re^{it} - n)} \frac{\mathrm{d}t}{2\pi}$$
$$= \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(k).$$

III.A.3) Montrer:

$$\left| \sum_{k=0}^{n} (-1)^{n-k} {n \choose k} f(k) \right| \leqslant \frac{n! M_f(r)}{(r-1) \cdots (r-n)}.$$

III.B - Preuve du théorème

On suppose ici:

a) $f(\mathbb{N}) \subset \mathbb{Z}$,

b) lorsque
$$r \to +\infty$$
, $M_f(r) = o\left(\frac{2^r}{\sqrt{r}}\right)$.

On va démontrer que f est polynomiale (théorème de Pólya).

N.B. L'exemple de $f(z) = 2^z$ montre que la condition asymptotique (b) n'est pas loin d'être optimale.

III.B.1) En appliquant III.A.3 à $r=2\,n+1$, prouver qu'il existe N dans $\mathbb N$ tel que

$$\forall n \geqslant N, \ \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(k) = 0.$$

III.B.2) À l'aide de I.D) et II.E), prouver le résultat désiré.

$\bullet \bullet \bullet \text{ FIN } \bullet \bullet \bullet$