Premier devoir surveillé

Durée 4 h

Les calculatrices sont interdites.

Les questions étoilées sont réservées aux 5/2 et aux 3/2 aventureux. Mais leurs résultats pourront être librement utilisés par tous.

Questions de cours [E3A23]

- 1. Pour tout réel θ , donner le module et un argument du nombre complexe $e^{i\theta}$.
- **2.** Pour tout entier naturel n et tout réel t, démontrer que $\sin(n\pi + t) = (-1)^n \sin(t)$.
- **3.** Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels, décroissante et de limite nulle.
 - **3.1.** Justifier que la série $\sum_{n\geqslant 0} (-1)^n a_n$ converge.
 - **3.2.** Pour tout entier naturel p, justifier que la série $\sum_{n\geqslant p} (-1)^n a_n \text{ converge. Sa somme sera notée } T_p.$

- **3.3.** Justifier que la suite $(T_p)_{p\in\mathbb{N}}$ converge et donner sa limite.
- **3.4.** Rappeler le signe de T_p suivant les valeurs de p.
- **4.** Soit f une fonction continue sur \mathbb{R} à valeurs dans \mathbb{R} . Justifier que la fonction $x\mapsto \int_0^{\sqrt{x}} f(t)\,\mathrm{d}t$ est de classe \mathscr{C}^1 sur \mathbb{R}_+^* et que sa dérivée est la fonction $x\mapsto \frac{f(\sqrt{x})}{2\sqrt{x}}$.

Premier exercice [E3A16]

Soit n un entier naturel non nul.

- 1. Soit $\theta \in [0, 2\pi[$. Déterminer, s'ils existent, le module et l'argument du nombre complexe $u = 1 + e^{i\theta}$.
- **2.** On note P_n le polynôme de $\mathbb{C}[X]$ défini par

$$P_n(X) = \frac{1}{2i} \left[(X+i)^{2n+1} - (X-i)^{2n+1} \right].$$

- **2.1.** Étude des cas n = 1 et n = 2.
 - **2.1.1.** Déterminer les polynômes P_1 et P_2 .
 - **2.1.2.** Vérifier que $P_1 \in \mathbb{R}_2[X]$ et $P_2 \in \mathbb{R}_4[X]$. Sont-ils irréductibles dans $\mathbb{R}[X]$?

2.2. On revient au cas général.

- **2.2.1.** Montrer que $P_n \in \mathbb{C}_{2n}[X]$. Donner son degré et son coefficient dominant.
- **2.2.2.** Soit $N \in \mathbb{N}^*$. Donner l'expression des racines N-ièmes de l'unité.
- **2.2.3.** Calculer $P_n(i)$.
- **2.2.4.** Prouver par un argument géométrique que les racines de P_n sont réelles.
- **2.2.5.** Soit $a \in \mathbb{C}$. Prouver l'équivalence :

$$a \text{ racine de } P_n \iff \exists k \in [1, 2n],$$

$$a(e^{2ik\pi/(2n+1)} - 1) = i(e^{2ik\pi/(2n+1)} + 1).$$

2.2.6. Déterminer les racines du polynôme P_n . Vérifier alors le résultat de la question 2.2.4.

- **2.2.7.** En développant P_n , déterminer un polynôme Q_n de degré n et à coefficients réels tel que $P_n(X) = Q_n(X^2)$. On admettra l'unicité du polynôme Q_n obtenu.
- **2.2.8.** Expliciter Q_1 et Q_2 et déterminer leurs racines respectives.
- **2.2.9.** Déterminer les racines de Q_n en fonction de celles de P_n .

3. On pose
$$S_n = \sum_{k=1}^n \frac{1}{\tan^2 \left(\frac{k\pi}{2n+1}\right)}$$
.

En utilisant les résultats obtenus à la question précédente, montrer que

$$S_n = \frac{n(2n-1)}{3}.$$

4. Illustrer graphiquement les inégalités suivantes que l'on démontrera :

$$\forall x \in \left[0, \frac{\pi}{2}\right[, \ 0 \leqslant \sin(x) \leqslant x \leqslant \tan(x).$$

En déduire que

$$\forall x \in \left]0, \frac{\pi}{2}\right[, \frac{1}{\tan^2(x)} \leqslant \frac{1}{x^2} \leqslant 1 + \frac{1}{\tan^2(x)}.$$

5. Justifier la convergence de la série de terme général $1/k^2$ et calculer la somme

$$\sum_{k=1}^{+\infty} \frac{1}{k^2}.$$

Deuxième exercice [E3A16]

Le but de cet exercice est de donner, dans la partie I, quatre expressions différentes du réel $\ln(2)$ sous la forme d'une somme de série puis d'étudier, dans la partie II, la vitesse de convergence de ces quatre séries.

Partie I

- 1. (a) Montrer que la série de terme général $\frac{1}{n 2^n}$ est convergente.
- (b)* En utilisant le développement en série entière de la fonction $x \mapsto \ln(1+x)$, montrer que

$$\sum_{n=1}^{+\infty} \frac{1}{n \, 2^n} = \ln(2).$$

- 2. Montrer que la série de terme général $\frac{1}{n(n+1)2^n}$ est convergente. Que vaut sa somme?
- **3.** (a) Montrer que la série de terme général $\frac{(-1)^{n-1}}{n}$ est convergente.
- (b)* Peut-on encore utiliser le développement en série entière précédent pour prouver que

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln(2)?$$

4. On considère la suite $(a_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, \ a_n = \frac{1 \times 3 \dots \times (2n-1)}{n \cdot 2^{n+1} \cdot n!} = \frac{\prod_{k=0}^{n-1} (2k+1)}{n \cdot 2^{n+1} \cdot n!}.$$

(a) Montrer que pour tout $n \in \mathbb{N}^*$.

$$a_n = \frac{(2n)!}{n \cdot 2^{2n+1} (n!)^2}.$$

- (b) Rappeler la formule de Stirling.
- (c) Montrer que la série de terme général a_n est convergente. On admet que

$$\sum_{n=1}^{+\infty} a_n = \ln(2).$$

Partie II

Pour $n \in \mathbb{N}$, on note

$$R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k \, 2^k}, \qquad S_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^{k-1}}{k},$$
$$T_n = \sum_{k=n+1}^{+\infty} a_k, \qquad V_n = \sum_{k=n+1}^{+\infty} \frac{1}{k \, (k+1) \, 2^k}.$$

 R_n , S_n , T_n et V_n sont donc les restes d'indice n des séries vues en première partie. Le but de cette partie est de déterminer des équivalents des quatre suites (R_n) , (S_n) , (T_n) et (V_n) .

1. On note dans cette question $(U_n)_{n\geqslant 0}$ la suite définie par

$$U_n = \sum_{i=n+1}^{+\infty} \frac{1}{2^i}.$$

- (a) Calculer U_n . Écrire pour tout $k \in \mathbb{N}^*$, $\frac{1}{2^k}$ en fonction de deux termes de la suite $(U_n)_{n\geqslant 0}$.
 - (b) En déduire que pour tout $n \in \mathbb{N}$,

$$R_n = \frac{U_n}{n+1} - \sum_{k=n+1}^{+\infty} \frac{U_k}{k(k+1)}.$$

- (c) Montrer que $\sum_{k=n+1}^{+\infty} \frac{U_k}{k(k+1)} = o(R_n).$
- (d) Conclure que $R_n \sim \frac{1}{n 2^n}$.
- 2. (a) Montrer que

$$\forall n \in \mathbb{N}^*, \forall t \in [0, 1], \sum_{k=0}^{n-1} (-1)^k t^k = \frac{1}{1+t} - (-1)^n \frac{t^n}{1+t}.$$

(b) En déduire que pour tout $n \in \mathbb{N}^*$,

$$S_n = (-1)^n \int_0^1 \frac{t^n}{1+t} dt.$$

(c) Montrer que l'on a

$$\forall n \in \mathbb{N}^*, \ S_n = \frac{(-1)^n}{2(n+1)} + \frac{(-1)^n}{n+1} \int_0^1 \frac{t^{n+1}}{(1+t)^2} \, \mathrm{d}t.$$

- (d) Conclure que $S_n \sim \frac{(-1)^n}{2n}$.
- **3.** (a) Soit $\varepsilon > 0$. Montrer qu'il existe un rang $N \in \mathbb{N}$ tel que

$$\forall k \geqslant N, \ \frac{1-\varepsilon}{2\sqrt{\pi}k^{\frac{3}{2}}} \leqslant a_k \leqslant \frac{1+\varepsilon}{2\sqrt{\pi}k^{\frac{3}{2}}}.$$

(b) Montrer que pour tout entier $k \ge 2$,

$$\int_{k}^{k+1} \frac{\mathrm{d}t}{t^{\frac{3}{2}}} \leqslant \frac{1}{k^{\frac{3}{2}}} \leqslant \int_{k-1}^{k} \frac{\mathrm{d}t}{t^{\frac{3}{2}}}.$$

(c)* Déduire des questions précédentes que

$$\forall n \geqslant N, \ \frac{1-\varepsilon}{2\sqrt{\pi}} \int_{n+1}^{+\infty} \frac{\mathrm{d}t}{t^{\frac{3}{2}}} \leqslant T_n \leqslant \frac{1+\varepsilon}{2\sqrt{\pi}} \int_{n}^{+\infty} \frac{\mathrm{d}t}{t^{\frac{3}{2}}}.$$

- (d)* Conclure que $T_n \sim \frac{1}{\sqrt{\pi n}}$.
- **4.** Montrer que $V_n \sim \frac{1}{n^2 2^n}$.
- **5.** Parmi les quatre séries étudiées dans cet exercice, laquelle converge le plus rapidement? Laquelle converge le moins rapidement? Justifier vos réponses.

Troisième exercice [CS24]

Soit $p \in \mathbb{N}$ et $(u_n)_{n \geqslant p}$ une suite de nombres réels. On pose pour tout $n \in \mathbb{N}$ tel que $n \ge p$,

$$P_n = \prod_{k=p}^n u_k.$$

On dit que la suite $(P_n)_{n\geqslant p}$ est la suite des produits partiels du produit infini $\prod u_n$.

Si la suite $(P_n)_{n \geqslant p}$ converge, on dit que sa limite est la valeur du produit infini et on pose :

$$\prod_{k=p}^{+\infty} u_k = \lim_{n \to +\infty} P_n.$$

Résultats préliminaires

I.A – Soit $n \in \mathbb{N}^*$.

Q 1. Montrer que, pour tout $(x_1, \ldots, x_n) \in \mathbb{R}^n$,

$$\left| \left(\prod_{k=1}^{n} (1+x_k) \right) - 1 \right| \leqslant \left(\prod_{k=1}^{n} (1+|x_k|) \right) - 1.$$

Q 2. Montrer que, pour tout $(x_1, \ldots, x_n) \in [-1, +\infty[^n,$

$$\prod_{k=1}^{n} (1 + x_k) \leqslant \exp\left(\sum_{k=1}^{n} x_k\right).$$

I.B – Soit $z \in \mathbb{C}$. Pour tout $n \in \mathbb{N}^*$, on pose

$$u_n = \left(1 + \frac{z}{n}\right)^n.$$

Le but de cette sous-partie est de montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers e^z .

Q 3. Montrer que, pour tout $t \in \mathbb{C}$,

$$|(1+t) - e^t| \le |t|^2 e^{|t|}.$$

Q 4. Soit $(a,b) \in \mathbb{C}^2$ et $n \in \mathbb{N}^*$. On note $M = \max\{|a|, |b|\}.$ Montrer que $|a^n - b^n| \le n M^{n-1} |a - b|.$

Q 5. Montrer que, pour tout $n \in \mathbb{N}^*$,

$$\left| \left(1 + \frac{z}{n} \right)^n - e^z \right| \leqslant \frac{|z|^2}{n} e^{|z|}.$$

Q 6. Conclure que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers e^z .

Exemples de calcul de produit infini

II.A - Q 7. Calculer

$$\prod_{n=2}^{+\infty} \left(1 - \frac{1}{n^2} \right) \text{ et } \prod_{n=2}^{+\infty} \left(1 + \frac{(-1)^{n+1}}{n} \right).$$

On pourra, pour tout $N \ge 2$, établir une expression de

$$\prod_{n=2}^N \left(1-\frac{1}{n^2}\right) \text{ et de } \prod_{n=2}^{2N} \left(1+\frac{(-1)^{n+1}}{n}\right).$$

II.B – Pour tout $n \in \mathbb{N}$, on pose

$$W_n = \int_{0}^{\frac{\pi}{2}} (\cos u)^n \, \mathrm{d}u.$$

Q 8. Montrer que, pour tout $n \in \mathbb{N}$,

$$(n+2)W_{n+2} = (n+1)W_n$$

et en déduire que, pour tout $n \in \mathbb{N}$,

$$W_{2n+1} = \frac{2^{2n}(n!)^2}{(2n+1)!}.$$

Q 9. Déterminer un équivalent de $(W_{2n+1})_{n\in\mathbb{N}}$ et en déduire

$$\prod_{n=1}^{+\infty} \left(1 + \frac{1}{4n^2 - 1} \right).$$