Deuxième devoir surveillé

Durée 4 h

Les calculatrices sont interdites.

Les questions étoilées sont réservées aux 5/2 et aux 3/2 aventureux. Mais leurs résultats pourront être librement utilisés par tous.

Problème 1 La fonction dilogarithme

[CCINP23]

Présentation générale

Dans cet exercice, on commence par définir la fonction dilogarithme dans la première partie, puis on étudie quelques-unes de ses propriétés dans les parties suivantes.

On admet et on pourra utiliser librement l'égalité :

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Partie I - Existence et premières propriétés de la fonction dilogarithme

Dans cette partie, on considère la fonction $f:]0, +\infty[\times] -\infty, 1] \to \mathbb{R}$ définie par :

$$\forall (t,x) \in \left]0,+\infty\right[\times\left]-\infty,1\right], f(t,x) = \frac{t}{e^t-x}.$$

Q1. Justifier que la fonction f est bien définie sur $[0, +\infty[\times]-\infty, 1]$.

Q2. Montrer que la fonction $t \mapsto f(t, 1)$ est intégrable sur $]0, +\infty[$.

Q3. Soit $x \in]-\infty, 1]$. En comparant les fonctions $t \mapsto f(t, x)$ et $t \mapsto f(t, 1)$, montrer que $t \mapsto f(t, x)$ est intégrable sur $]0, +\infty[$.

D'après les résultats précédents, on peut définir la fonction $L:]-\infty, 1] \to \mathbb{R}$ par :

$$\forall x \in \left]-\infty,1\right], L(x) = x \int_0^{+\infty} f(t,x) \,\mathrm{d}t.$$

Cette dernière est appelée fonction dilogarithme.

Q4.* Montrer que la fonction L est continue sur $]-\infty,1]$.

Partie II - Développement en série entière

Dans cette partie, on montre que la fonction L est développable en série entière. On considère un nombre réel $x \in [-1,1]$. Pour tout $n \in \mathbb{N}$, on définit la fonction $s_n :]0, +\infty[\to \mathbb{R}$ par

$$\forall t \in]0, +\infty[, s_n(t) = t e^{-(n+1)t} x^n.$$

Q5. Soit $n \in \mathbb{N}$. Montrer que l'intégrale $\int_0^{+\infty} s_n(t) dt$ converge et que $\int_0^{+\infty} s_n(t) dt = \frac{x^n}{(n+1)^2}$.

Q6. Montrer que pour tout $t \in]0, +\infty[$, la série $\sum_{n \geq 0} s_n(t)$ converge et que

$$\forall t \in]0, +\infty[, \sum_{n=0}^{+\infty} s_n(t) = f(t, x).$$

Q7. Montrer que la série $\sum_{n\geq 1} \frac{x^n}{n^2}$ converge.

* Déduire des questions précédentes que

$$L(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}.$$

Q8. Montrer que pour tout $x \in [-1, 1]$, on a

$$L(x) + L(-x) = \frac{1}{2}L(x^2).$$

Q9. Déduire des questions précédentes les valeurs de L(1) et L(-1).

Partie III - Une autre propriété

Dans cette partie, on considère la fonction $h:]0,1[\to \mathbb{R}$ définie par :

$$\forall x \in]0,1[\,,h(x) = L(x) + L(1-x) + \ln(x)\ln(1-x).$$

Q10. Justifier que la fonction L est dérivable sur]-1,1[et montrer que l'on a :

$$\forall x \in]-1, 1[, L'(x)] = \begin{cases} -\frac{\ln(1-x)}{x} & \text{si } x \neq 0\\ 1 & \text{si } x = 0. \end{cases}$$

Q11. Montrer que la fonction h est constante sur]0,1[.

Q12. Montrer que h(x) = L(1) pour tout $x \in]0,1[$. En déduire la valeur de l'intégrale $\int_0^{+\infty} \frac{t}{2e^t - 1} dt$.

Problème 2 Étude d'une famille de séries entières [CCINP21]

Dans tout le problème, α désigne un nombre réel. On note \mathscr{D}_{α} l'ensemble des réels x pour lesquels la série entière $\sum_{n\geqslant 1}\frac{x^n}{n^{\alpha}}$ est convergente et on pose, pour tout $x\in\mathscr{D}_{\alpha}$:

$$f_{\alpha}(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^{\alpha}}.$$

Objectifs

Ce problème est composé de trois **parties** indépendantes.

Dans la **Partie I**, on étudie quelques propriétés élémentaires des fonctions f_{α} .

L'objectif de la **Partie II** est de construire un logarithme complexe.

Enfin, la **Partie III** permet d'obtenir un équivalent de $f_{\alpha}(x)$ lorsque x tend vers 1, dans le cas $\alpha \in]0,1[$.

Partie I - Quelques propriétés des fonctions f_{α}

Q13. Déterminer le rayon de convergence R commun aux séries entières définissant les fonctions f_{α} .

Q14. Déterminer, suivant les valeurs du réel α , le domaine de définition \mathscr{D}_{α} de la fonction f_{α} . On distinguera les cas $\alpha \in]-\infty, 0], \ \alpha \in]0, 1]$ et $\alpha \in]1, +\infty[$.

Q15. On suppose dans cette question $\alpha > 0$. Déterminer, pour tout $x \in \mathcal{D}_{\alpha}$, le signe de $f_{\alpha}(x)$.

Q16. Expliciter f_0 , f_{-1} et f_1 .

Q17.* Soit $\alpha > 1$. Prouver que f_{α} est continue sur \mathscr{D}_{α} .

Q18. Soit $\alpha \leq 1$. Prouver que $\lim_{x \to 1^{-}} f_{\alpha}(x) = +\infty$. On pourra comparer f_{α} à f_{1} .

Partie II - Un logarithme complexe

Q19. Donner sans démonstration le développement en série entière au voisinage de 0 de la fonction qui à $x \in]-1,1[$ associe $\ln(1+x)$.

Pour tout nombre complexe z, tel que la série

$$\sum_{n\geqslant 1} \frac{(-z)^n}{n}$$

est convergente, on note:

$$S(z) = -\sum_{n=1}^{+\infty} \frac{(-z)^n}{n}.$$

Q20. Donner le rayon de convergence R de la série entière définissant S. Pour tout x réel élément de]-R,R[, déterminer la valeur de $\exp(S(x))$.

Soit $z_0 \in \mathbb{C}$ tel que $|z_0| < R$. On considère la série entière de la variable *réelle t* suivante :

$$\sum_{n>1} (-1)^{n-1} \frac{z_0^n}{n} t^n.$$

En cas de convergence, on note g(t) sa somme.

On a donc, pour $t \in \mathbb{R}$ tel que la série est convergente, $g(t) = S(tz_0)$.

Q21. Déterminer le rayon de convergence de la série entière définissant g.

Q22. Prouver que g est définie et de classe C^{∞} sur [0,1]. Déterminer, pour tout $t \in [0,1]$, g'(t).

Q23. On pose $h = \exp \circ g$. Prouver que pour tout $t \in [0,1]$:

$$h'(t) = \frac{z_0}{1 + t z_0} h(t).$$

Q24. Résoudre l'équation différentielle de la question précédente et en déduire que :

$$\exp(S(z_0)) = z_0 + 1.$$

Partie III - Un équivalent de $f_{\alpha}(x)$ quand x tend vers 1, dans le cas où $\alpha \in]0,1[$

Dans toute cette partie, on suppose que $\alpha \in]0,1[$. L'objectif est de donner un équivalent de $f_{\alpha}(x)$ quand x tend vers 1.

Pour tout $x \in [0,1[$, on considère l'intégrale :

$$I(x) = \int_0^{+\infty} \frac{x^t}{t^{\alpha}} \, \mathrm{d}t.$$

Q25. Justifier que, pour tout $x \in]0,1[$, l'intégrale I(x) est convergente.

Q26. On rappelle que la fonction Γ d'Euler est définie sur \mathbb{R}_+^* par :

$$\forall s \in \mathbb{R}_+^*, \ \Gamma(s) = \int_0^{+\infty} t^{s-1} e^{-t} \, \mathrm{d}t.$$

Pour tout $x \in]0,1[$, déterminer une expression de I(x) faisant intervenir $\ln(x)$, α et $\Gamma(1-\alpha)$.

Q27. Prouver que, pour tout $x \in]0,1[$, la fonction $t \mapsto \frac{x^t}{t^{\alpha}}$ définie pour tout $t \in \mathbb{R}_+^*$ est décroissante sur \mathbb{R}_+^* .

Q28. En déduire, pour tout $x \in [0, 1[$, l'encadrement :

$$\int_{1}^{+\infty} \frac{x^{t}}{t^{\alpha}} dt \leqslant f_{\alpha}(x) \leqslant \int_{0}^{+\infty} \frac{x^{t}}{t^{\alpha}} dt.$$

Q29. En déduire un équivalent de $f_{\alpha}(x)$ quand x tend vers 1.