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Corrigé du deuxieme devoir surveillé

Probleme 1

Q1. Soient ¢t € ]0,+o00[ et z € |—o0,1]. Alors
r <1< et donc et —z > 0 et le dénominateur
de f(t,x) ne s’annule pas.

| Ainsi, f est bien définie sur |0, +oo[ x ]—o0, 1].

Q2. La fonction ¢ : t — f(t,1) =t/(e’ — 1) est conti-
nue sur |0, +oo[. De plus, ¢(t) ~¢0 1, ou t +— 1
est intégrable en 0, donc ¢ l'est aussi. Enfin, par
croissances comparées, (t) ~;_s 100 te ! < 1/t2, ol
t + 1/t? est intégrable en +oo car 2 > 1, donc ¢ Pest
aussi.

| Alors, ¢ : ¢+ f(t,1) est intégrable sur 0, +-ocl.

Q3. Soit = € |—o0,1] :

el —z > et —1, donc
t

et —x

c’est-a-dire |f(t,z)| < f(t,1)
|t = f(t,z) est intégrable sur ]0, +oo0l.

x < 1, donc pour tout ¢t > 0,

t < t
et—x T et—1’

= ¢(t). Par majoration,

Q4.* Nous venons de majorer f(t,z) par la fonc-
tion ¢, intégrable sur |0, +oo[ et indépendante de x :
il s’agit d’'une domination valide. Comme les hypo-
these de continuités sont immédiates, ou découlent
immédiatement des questions précédentes, le théo-
reme de continuité des intégrales dépendant d’un
parametre permet d’affirmer que

| L est définie et continue sur ]0, +ool.

Q5. Soient « € [-1,1] et n € N. D’une part,
lim;_,o+ s, (t) = 0 donc s, est intégrable en 0 car
elle y est prolongeable par continuité. D’autre part,
Sn(t) Kt100 1/t2 Ol t > 1/t2 est intégrable en +o0,
donc s, l'est aussi. Donc s,, est intégrable sur |0, +o0|
et | f0+°° sn(t)dt converge.

Réalisons une intégration par parties.

“+o0
/ te—(n-’rl)tdt
0

e—(n+1)t 1T +oo p—(nt1)t
= [t—— + —dt
[ —(n+ 1)} 0 /0 n+1

(n41)t 7T 1
{ “(n+ 1)2]0 (n+1)?
Cette intégration par parties est valide : en effet, la
premiére intégrale converge, on ’a vu en début de
question ; et la seconde intégrale converge, car c’est
une intégrale du cours avec n + 1 > 0. Alors, le pre-
mier crochet a un sens et 1’égalité est permise. Mieux,

ce crochet est nul car lim te” ("tDt =,
t—+o0

n

+o0 T
AlnSl, /0 Sn(t) dt = m

Q6. Soit ¢ > 0. Puisque c’est une série géométrique
de raison e 'z ou |e"fz| < 1,

| la série >, - sn(t) converge,

De plus,
“+o0 —t
te
—t
S oty = et Sy = 12
n=0
t
=g = f(t,z).

Q7. Sans difficulté, pour tout n > 1,
1
n2 S p?’

n2
ot Y 1/n? converge car 2 > 1, donc

| > ns1 " /n* converge.

* Faisons un calcul formel que 'on justifiera ensuite.

CALCUL FORMEL.

(1) L(z)==x = ft,z)dt
0
+o00 +00
2 =z s, (t)d
2) / IIROL
+oo +o0
3 = n(t)d
3) x; /0 s(t)dt
+oo n
(4) = xngo (n+1)2
+oo
) -y
n=1
JUSTIFICATIONS.

(1) C’est la définition de L.

(2) D’apres Q6.

(4) D’apres Q5.

(5) Gréace & une simple translation d’indice.

(3) Pour justifier cette permutation, utilisons le
théoreme idoine.
o D’apres Q5, les fonctions s, sont intégrables sur
10, 4-o0].
o D’apres QG6, la série de fonctions Zn)O Sy converge
simplement sur ]0, +-o0[.
o Sa somme, t — f(¢,x) est continue sur ]0, +o0l.
o Enfin, toujours d’apres Q5,

+oo |I|n
n(t)|dt = ——,
A N T
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CORRIGE DU DEUXIEME DEVOIR SURVEILLE

donc 37, -, f0+oo|sn\ converge.
e Alors, la permutation (3) est licite.

Q8. Soit x € [-1,1]. On a

L(z) + L(~z) = +Z Z—Z + +Z (_n“;)"
I
= as
too 2
an (;pz))2
p=1
+00
_ ;p_l f{f — Z I(a?)
Q9. D’apres I’énoncé,
=1 w2
Et avec la relation précédente,
L(-1)+ L(1) = 3 L((-1)%) = 3 (D),
donc 2
L(-1) = —§L(1) =173

Q10. D’apres Q7, L est développable en série entiere
sur [—1, 1] donc elle est de classe €>° sur |—1,1[. En
particulier, elle y est de classe €' et on peut dériver

son développement en série entiere terme a terme :

pour tout x € |—1,1],
+o00o

mnfl

Ll
() 2,

Ou on voit que L'(0) = 1. Et si  # 0, grace 4 un
développement en série entiere usuel,

+oo

1 x™ In(1 —z)

L'(z) =~ E e S
(=) T n x

On trouve bien I'expression attendue.

2

4

Q11. Tout d’abord, la fonction h est bien de classe €
sur ]0,1[ par opérations usuelles. Et pour tout
x€]0,1[, x #0et 1 —x # 0 donc

W(w) = I'(2)— I'(1—2) 4~ (1 —2) — In(z) —

x 1z
In(1—x) n In(1-(1—2)) . In(l—z) Iz

T 1—x T

1—x
=0.

| 11 s’ensuit que h est constante sur |0, 1.

Q12. Etudions la limite de k en 07. D’aprés Q4, L
est continue en 0 et en 1, donc

ill)% L(z) =L(0)=0et ilirb L(1—z)=L(1).
En outre, quand x est proche de 0
In(z)In(1 — z) ~ —zln(z) — 0.
Alors,
lim h(z) = L(0) + L(1) + 0 = L(1).

x—0

Comme h est une constante, cette limite est cette
constante, donc | pour tout x € ]0,1[, h(x) = L(1).

Pour commencer, pour tout ¢ > 0,

1 1
~30(t3)

donc I'intégrale de I’énoncé a un sens et vaut L(3).
Par ailleurs,

1

2

12)-46) 1-2) ()
:2L(;> +1n%(2).

Enfin, h(1) = L(1), donc

t 1t
2¢t—1 2¢t -1
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Probleme 2

Q13. Soit a € R. Voici deux fagons, sans ordre de
préférence.

PREMIERE FAQON. Pour tout n >

e

donc avec la regle de d’Alembert, | R = 1.

1,1/n*#0 et

na

N (n+1)® n—o+oo

L,

DEUXIEME FAGON. Pour tout n > 1, 1 = n® - (1/n%),
n
donc d’apres le cours, les séries entiéres Zn>1 x" et
an 1 2" /n® ont méme rayon de convergence. La pre-
miére est une série géométrique usuelle, donc | R = 1.

Q14. D’apres Q13, f, est au moins définie sur |—1,1].
Il reste a étudier la convergence en +1.

On sait que la série de Riemann ) -, 1/n®
converge si et seulement si @ > 1. Autrement dit,
1 € 9, si et seulement si a > 1.

Etudions la série alternée D s (=) /.

Si a > 1, elle converge absolument : —1 € Z,.

Sia<0,1/n* 4 0 donc elle diverge grossiére-
ment : —1 ¢ 9,.

Si0 < a < 1, elle converge d’apres le théoréeme spé-
cial des séries alternees car la suite (1/n%),>1 décroit
vers 0 : —1 € 9,.

]_151[
[_1’1[
[_171]

si a <0,
si0<a<l,
sia > 1.

Finalement, 2, =

Q15. Ici a > 0. Soit = € Z,,.

Sixz >0, fo(x) > 0, comme somme de termes
positifs.

Siz < 0, lasérie 37 o, 2"/n® est alternée et
converge d’apres le théoréeme spécial des séries al-
ternées, donc sa somme est du signe de son premier
terme, x : fo(z) <O0.

|Sia>0etx€ P, fa(z) est du signe de z.

Q16. |vz € ]-1,1],

Z 4
Commentaire. Attention de ne pas oublier le premier
terme de la série géométrique.

Puisqu’on peut dériver la somme d’une série entiere
terme a terme,

Ve e]-1,1],

Zm
:xgmn— _x<zx>

()

d
o
dx

x

(1—z)*

3

4

Enfin, en reconnaissant un développement en série
entiere usuel,

+oo  n
Ve e 1,1 filz)=Y % = —In(l - 2)

Commentaire. On a vu dans un exemple du cours que

t  1\n
> = —1In(2).
n=1
Donc 'expression de f; est encore valide pour x = —1.

Mais le jour du concours, il faut le redémontrer.

Q17*. Soit > 1. Bien-siir, f, est continue sur
]—1, 1[ comme somme d’une série entiére. Par ailleurs,
pour tout x € Z,,

n

1

\na

T

na

. o - s
ou)_, -, 1/n® converge, donc L? série entiére converge
normalement sur Z,. En conséquence,

| fo est continue sur Z,,.

Q18. Soient e < 1,z € [0,1[ et n € N* : n® < n donc
LA
n« n
Ainsi, fo(x) = fi(x) = —In(1 —z) — +00 done
x— 1=
lim f,(x) = 4o0.
T—1—
+oo 133"
19. |V —1,1[, In(1 = -1 —.
Q1. € L1 Il ) = D11

Q20. Sans difficulté, avec la regle de d’Alembert,

R=1.

En reconnaissant un développement en série en-
tiere usuel, pour tout =z € |—1,1[, S(z) = In(1 + x),
donc |exp(S(x)) =1 +z.

Q21. Soit 2o tel que |zg| < 1. Notons R, le rayon de
convergence de la série étudiée.
Si zp = 0, cette série est nulle, donc Ry = +o00.
Sinon, encore avec la regle de d’Alembert,

R A R | 120] = |20l
n+1 nl| Jrlzo “

donc R, = 1/|z].
Avec la convention habituelle pour les rayons de
convergence que 1/0 = 400, dans tous les cas

Ry = 1/|zo].
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Q22. Alors R > 1 car |z| < 1. Ainsi, [0,1] C |-R, R][.

Comme somme d’une série entiere,

| g est donc de classe € sur [0, 1].

De plus, on peut la dériver terme a terme :

“+oo
n—1_nn— %0
|Vt€[071}7 g/(t):Z<_1) 1ZOt 1 1+Zot7
n=1 -

ou l'on a reconnu une somme géométrique de raison
zZot et de premier terme zg.

Q23. Bien-siir, h est de classe €' comme composée
de fonctions qui le sont, et A’ = ¢’ - exp o g. Avec la
question précédente,
20
vVt € [0,1], A'(t) = h(t
[ ] ( ) 1+ 29t

Q24. Cette équation différentielle est bien définie
sur [0,1] et est sous forme normale, donc d’aprés
le cours, l'espace de ses solutions sur [0,1] est une
droite vectorielle. De plus, on « voit » que la fonc-
tion ¢t +— 1 + 2ot est une solution évidente sur [0, 1].
Elle n’est pas la solution nulle, donc elle engendre la
droite des solutions : en particulier, il existe « € C
tel que pour tout ¢t € [0,1], h(t) = a (1 + zt). Or
h(0) = exp(g(0)) = € = 1, donc a = 1. Finalement,
|Vt € [0,1], h(t) =1+ zot.

En particulier, pour ¢t = 1, | exp(S(20)) = 1 + 20.

Q25. Soient « et x dans ]0,1[. La fonction
@t xt/t* est continue sur R% . De plus, quand
t = 0,0 < o(t) < 1/t* et t — 1/t* est in-
tégrable en 0, donc ¢ aussi. Et quand t — 400,
0 < p(t) < 2t =exp(tin(x)). Or In(z) < 0 car x < 1,
donc ¢ — exp(tln(z)) est intégrable en 400, donc ¢
aussi.

| Ainsi, U'intégrale I(x) converge.

Q26. On a I(x) o9t etn(®) dt. En posant

u = —tIn(x), qui est un changement de variable licite

car bijectif et de classe € de R’ dans lui-méme,
du

+oo
(—ln(x))a_l/ u' T e du
0

(=In(2)* (1 - a).

4

4

Q27. On reconnait la fonction ¢ considérée en Q25.
Comme In(z) < 0, t — e!!"(®) décroit sur RY. Et clai-
rement, ¢t — 1/t* aussi. Comme produit de fonctions
positives et décroissantes,

| @ décroit sur R .

Q28. Par comparaison série-intégrale, la série
Y ons1#(n) est de méme nature que lintégrale

O+OO p(t)dt. Et comme elles convergent toutes les

deux, on a directement I’encadrement voulu :

“+o00 l’t “+o0 l’t
1 0

Q29. D’une part, grace a Q26,

—+00 .%'t
/ Tt = I(2) = (~In(@))" " (1 ).
0

Or —In(z) = —In(1 — (1 — z)) et quand z — 17,
—1In(z) ~ 1 — z, ou encore
-1
n(z) —1
11—z

donc
—In(x)
1—x

a—1
) 1

— )L Ainsi,

(

et (—In(x))* 1~ (1

D’autre part,

+oo .t
/ =
1 t
1 1
1 1
/ dtg/—adtz .
0 o t l1-a

Ainsi, quand  — 17, fol t%tdt est négligeable devant

De plus,

.’I,'t

ta

0<

I(x) qui est un infiniment grand, et

+oo .t
X
/ o dt
1 t

Finalement, au voisinage de 17,

I'l-a)
falz) ~ (D

~
rz—1-

I(x).




