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Corrigé du deuxième devoir surveillé

Problème 1
Q1. Soient t ∈ ]0, +∞[ et x ∈ ]−∞, 1]. Alors
x ⩽ 1 < et, donc et − x > 0 et le dénominateur
de f(t, x) ne s’annule pas.

Ainsi, f est bien définie sur ]0, +∞[ × ]−∞, 1].

Q2. La fonction φ : t 7→ f(t, 1) = t/(et − 1) est conti-
nue sur ]0, +∞[. De plus, φ(t) ∼t→0 1, où t 7→ 1
est intégrable en 0, donc φ l’est aussi. Enfin, par
croissances comparées, φ(t) ∼t→+∞ te−t ≪ 1/t2, où
t 7→ 1/t2 est intégrable en +∞ car 2 > 1, donc φ l’est
aussi.

Alors, φ : t 7→ f(t, 1) est intégrable sur ]0, +∞[.

Q3. Soit x ∈ ]−∞, 1] : x ⩽ 1, donc pour tout t > 0,
et − x ⩾ et − 1, donc∣∣∣∣ t

et − x

∣∣∣∣ = t

et − x
⩽

t

et − 1 ,

c’est-à-dire |f(t, x)| ⩽ f(t, 1) = φ(t). Par majoration,
t 7→ f(t, x) est intégrable sur ]0, +∞[.

Q4.* Nous venons de majorer f(t, x) par la fonc-
tion φ, intégrable sur ]0, +∞[ et indépendante de x :
il s’agit d’une domination valide. Comme les hypo-
thèse de continuités sont immédiates, ou découlent
immédiatement des questions précédentes, le théo-
rème de continuité des intégrales dépendant d’un
paramètre permet d’affirmer que

L est définie et continue sur ]0, +∞[.

Q5. Soient x ∈ [−1, 1] et n ∈ N. D’une part,
limt→0+ sn(t) = 0 donc sn est intégrable en 0 car
elle y est prolongeable par continuité. D’autre part,
sn(t) ≪t→+∞ 1/t2 où t 7→ 1/t2 est intégrable en +∞,
donc sn l’est aussi. Donc sn est intégrable sur ]0, +∞[
et
∫ +∞

0 sn(t)dt converge.
Réalisons une intégration par parties.∫ +∞

0
te−(n+1)tdt

=
[
t

e−(n+1)t

−(n + 1)

]+∞

0
+
∫ +∞

0

e−(n+1)t

n + 1 dt

=
[
t

e−(n+1)t

−(n + 1)2

]+∞

0
= 1

(n + 1)2 .

Cette intégration par parties est valide : en effet, la
première intégrale converge, on l’a vu en début de
question ; et la seconde intégrale converge, car c’est
une intégrale du cours avec n + 1 > 0. Alors, le pre-
mier crochet a un sens et l’égalité est permise. Mieux,
ce crochet est nul car lim

t→+∞
te−(n+1)t = 0.

Ainsi,
∫ +∞

0
sn(t)dt = xn

(n + 1)2 .

Q6. Soit t > 0. Puisque c’est une série géométrique
de raison e−t x où |e−t x| < 1,

la série
∑

n⩾0 sn(t) converge,

De plus,
+∞∑
n=0

sn(t) = te−t
+∞∑
n=0

(e−tx)n = te−t

1 − e−tx

= t

et − x
= f(t, x).

Q7. Sans difficulté, pour tout n ⩾ 1,∣∣∣∣xn

n2

∣∣∣∣ = |x|n

n2 ⩽
1
n2 ,

où
∑

1/n2 converge car 2 > 1, donc∑
n⩾1 xn/n2 converge.

* Faisons un calcul formel que l’on justifiera ensuite.

Calcul formel.

L(x) = x

∫ +∞

0
f(t, x)dt(1)

= x

∫ +∞

0

+∞∑
n=0

sn(t)dt(2)

= x

+∞∑
n=0

∫ +∞

0
sn(t)dt(3)

= x

+∞∑
n=0

xn

(n + 1)2(4)

=
+∞∑
n=1

xn

n2 .(5)

Justifications.
(1) C’est la définition de L.
(2) D’après Q6.
(4) D’après Q5.
(5) Grâce à une simple translation d’indice.
(3) Pour justifier cette permutation, utilisons le

théorème idoine.
◦ D’après Q5, les fonctions sn sont intégrables sur
]0, +∞[.
◦ D’après Q6, la série de fonctions

∑
n⩾0 sn converge

simplement sur ]0, +∞[.
◦ Sa somme, t 7→ f(t, x) est continue sur ]0, +∞[.
◦ Enfin, toujours d’après Q5,∫ +∞

0
|sn(t)|dt = |x|n

(n + 1)2 ,
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Corrigé du deuxième devoir surveillé

donc
∑

n⩾0
∫ +∞

0 |sn| converge.
• Alors, la permutation (3) est licite.

Q8. Soit x ∈ [−1, 1]. On a

L(x) + L(−x) =
+∞∑
n=1

xn

n2 +
+∞∑
n=1

(−x)n

n2

=
+∞∑
n=1

(1 + (−1)n) xn

n2

=
+∞∑
p=1

2 x2p

(2p)2

= 1
2

+∞∑
p=1

x2p

p2 = 1
2 L(x2).

Q9. D’après l’énoncé,

L(1) =
+∞∑
n=1

1
n2 = π2

6 .

Et avec la relation précédente,

L(−1) + L(1) = 1
2 L((−1)2) = 1

2 L(1),

donc
L(−1) = −1

2 L(1) = −π2

12 .

Q10. D’après Q7, L est développable en série entière
sur [−1, 1] donc elle est de classe C ∞ sur ]−1, 1[. En
particulier, elle y est de classe C 1 et on peut dériver
son développement en série entière terme à terme :
pour tout x ∈ ]−1, 1[,

L′(x) =
+∞∑
n=1

xn−1

n
.

Où l’on voit que L′(0) = 1. Et si x ≠ 0, grâce à un
développement en série entière usuel,

L′(x) = 1
x

+∞∑
n=1

xn

n
= − ln(1 − x)

x
.

On trouve bien l’expression attendue.

Q11. Tout d’abord, la fonction h est bien de classe C 1

sur ]0, 1[ par opérations usuelles. Et pour tout
x ∈ ]0, 1[, x ̸= 0 et 1 − x ̸= 0 donc

h′(x) = L′(x)−L′(1−x)+ 1
x

ln(1−x)− ln(x) 1
1−x

= − ln(1−x)
x

+ ln(1−(1−x))
1−x

+ ln(1−x)
x

− ln x

1−x

= 0.

Il s’ensuit que h est constante sur ]0, 1[.

Q12. Étudions la limite de h en 0+. D’après Q4, L
est continue en 0 et en 1, donc

lim
x→0

L(x) = L(0) = 0 et lim
x→0

L(1 − x) = L(1).

En outre, quand x est proche de 0

ln(x) ln(1 − x) ∼ −x ln(x) → 0.

Alors,

lim
x→0

h(x) = L(0) + L(1) + 0 = L(1).

Comme h est une constante, cette limite est cette
constante, donc pour tout x ∈ ]0, 1[, h(x) = L(1).

Pour commencer, pour tout t > 0,

t

2et − 1 = 1
2

t

et − 1
2

= 1
2 f

(
t,

1
2

)
,

donc l’intégrale de l’énoncé a un sens et vaut L( 1
2 ).

Par ailleurs,

h

(
1
2

)
= L

(
1
2

)
+ L

(
1 − 1

2

)
+ ln

(
1
2

)
ln
(

1 − 1
2

)
= 2L

(
1
2

)
+ ln2(2).

Enfin, h( 1
2 ) = L(1), donc∫ +∞

0

t

2et − 1 dt = π2

12 − 1
2 ln2(2).
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Problème 2
Q13. Soit α ∈ R. Voici deux façons, sans ordre de
préférence.

Première façon. Pour tout n ⩾ 1, 1/nα ̸= 0 et∣∣∣∣ 1
(n + 1)α

/
1

nα

∣∣∣∣ = nα

(n + 1)α
−−−−−→
n→+∞

1,

donc avec la règle de d’Alembert, R = 1.

Deuxième façon. Pour tout n ⩾ 1, 1 = nα · (1/nα),
donc d’après le cours, les séries entières

∑
n⩾1 xn et∑

n⩾1 xn/nα ont même rayon de convergence. La pre-
mière est une série géométrique usuelle, donc R = 1.

Q14. D’après Q13, fα est au moins définie sur ]−1, 1[.
Il reste à étudier la convergence en ±1.

On sait que la série de Riemann
∑

n⩾1 1/nα

converge si et seulement si α > 1. Autrement dit,
1 ∈ Dα si et seulement si α > 1.

Étudions la série alternée
∑

n⩾1(−1)n/nα.
Si α > 1, elle converge absolument : −1 ∈ Dα.
Si α ⩽ 0, 1/nα ̸→ 0 donc elle diverge grossière-

ment : −1 /∈ Dα.
Si 0 < α ⩽ 1, elle converge d’après le théorème spé-

cial des séries alternées car la suite (1/nα)n⩾1 décroit
vers 0 : −1 ∈ Dα.

Finalement, Dα =


]−1, 1[ si α ⩽ 0,

[−1, 1[ si 0 < α ⩽ 1,

[−1, 1] si α > 1.

Q15. Ici α > 0. Soit x ∈ Dα.
Si x ⩾ 0, fα(x) ⩾ 0, comme somme de termes

positifs.
Si x < 0, la série

∑
n⩾1 xn/nα est alternée et

converge d’après le théorème spécial des séries al-
ternées, donc sa somme est du signe de son premier
terme, x : fα(x) < 0.

Si α > 0 et x ∈ Dα, fα(x) est du signe de x.

Q16. ∀x ∈ ]−1, 1[, f0(x) =
+∞∑
n=1

xn = x

1 − x
.

Commentaire. Attention de ne pas oublier le premier
terme de la série géométrique.

Puisqu’on peut dériver la somme d’une série entière
terme à terme,

∀x ∈ ]−1, 1[, f−1(x) =
+∞∑
n=1

nxn

= x

+∞∑
n=1

nxn−1 = x
d

dx

( +∞∑
n=0

xn

)

= x
d

dx

(
1

1 − x

)
= x

(1 − x)2 .

Enfin, en reconnaissant un développement en série
entière usuel,

∀x ∈ ]−1, 1[, f1(x) =
+∞∑
n=1

xn

n
= − ln(1 − x).

Commentaire. On a vu dans un exemple du cours que
+∞∑
n=1

(−1)n

n
= − ln(2).

Donc l’expression de f1 est encore valide pour x = −1.
Mais le jour du concours, il faut le redémontrer.

Q17*. Soit α > 1. Bien-sûr, fα est continue sur
]−1, 1[ comme somme d’une série entière. Par ailleurs,
pour tout x ∈ Dα, ∣∣∣∣xn

nα

∣∣∣∣ ⩽ 1
nα

où
∑

n⩾1 1/nα converge, donc la série entière converge
normalement sur Dα. En conséquence,

fα est continue sur Dα.

Q18. Soient α ⩽ 1, x ∈ [0, 1[ et n ∈ N∗ : nα ⩽ n donc

xn

nα
⩾

xn

n
.

Ainsi, fα(x) ⩾ f1(x) = − ln(1 − x) −−−−→
x→1−

+∞ donc

lim
x→1−

fα(x) = +∞.

Q19. ∀x ∈ ]−1, 1[, ln(1 + x) =
+∞∑
n=1

(−1)n−1 xn

n
.

Q20. Sans difficulté, avec la règle de d’Alembert,
R = 1.

En reconnaissant un développement en série en-
tière usuel, pour tout x ∈ ]−1, 1[, S(x) = ln(1 + x),
donc exp(S(x)) = 1 + x.

Q21. Soit z0 tel que |z0| < 1. Notons Rg le rayon de
convergence de la série étudiée.

Si z0 = 0, cette série est nulle, donc Rg = +∞.
Sinon, encore avec la règle de d’Alembert,∣∣∣∣(−1)n zn+1

0
n + 1

/
(−1)n−1 zn

0
n

∣∣∣∣ = n

n + 1 |z0| → |z0|

donc Rg = 1/|z0|.
Avec la convention habituelle pour les rayons de

convergence que 1/0 = +∞, dans tous les cas
Rg = 1/|z0|.
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Q22. Alors R > 1 car |z0| < 1. Ainsi, [0, 1] ⊂ ]−R, R[.
Comme somme d’une série entière,

g est donc de classe C ∞ sur [0, 1].

De plus, on peut la dériver terme à terme :

∀t ∈ [0, 1], g′(t) =
+∞∑
n=1

(−1)n−1 zn
0 tn−1 = z0

1 + z0 t
,

où l’on a reconnu une somme géométrique de raison
z0 t et de premier terme z0.

Q23. Bien-sûr, h est de classe C 1 comme composée
de fonctions qui le sont, et h′ = g′ · exp ◦ g. Avec la
question précédente,

∀t ∈ [0, 1], h′(t) = z0

1 + z0 t
h(t).

Q24. Cette équation différentielle est bien définie
sur [0, 1] et est sous forme normale, donc d’après
le cours, l’espace de ses solutions sur [0, 1] est une
droite vectorielle. De plus, on « voit » que la fonc-
tion t 7→ 1 + z0 t est une solution évidente sur [0, 1].
Elle n’est pas la solution nulle, donc elle engendre la
droite des solutions : en particulier, il existe α ∈ C
tel que pour tout t ∈ [0, 1], h(t) = α (1 + z0 t). Or
h(0) = exp(g(0)) = e0 = 1, donc α = 1. Finalement,

∀t ∈ [0, 1], h(t) = 1 + z0 t.

En particulier, pour t = 1, exp(S(z0)) = 1 + z0.

Q25. Soient α et x dans ]0, 1[. La fonction
φ : t 7→ xt/tα est continue sur R∗

+. De plus, quand
t → 0, 0 ⩽ φ(t) ⩽ 1/tα, et t 7→ 1/tα est in-
tégrable en 0, donc φ aussi. Et quand t → +∞,
0 ⩽ φ(t) ⩽ xt = exp(t ln(x)). Or ln(x) < 0 car x < 1,
donc t 7→ exp(t ln(x)) est intégrable en +∞, donc φ
aussi.

Ainsi, l’intégrale I(x) converge.

Q26. On a I(x) =
∫ +∞

0 t−α et ln(x) dt. En posant
u = −t ln(x), qui est un changement de variable licite
car bijectif et de classe C 1 de R∗

+ dans lui-même,

I(x) =
∫ +∞

0

(
u

− ln(x)

)−α

e−u du

− ln(x)

= (− ln(x))α−1
∫ +∞

0
u1−α−1 e−u du

= (− ln(x))α−1 Γ (1 − α).

Q27. On reconnait la fonction φ considérée en Q25.
Comme ln(x) < 0, t 7→ et ln(x) décroit sur R∗

+. Et clai-
rement, t 7→ 1/tα aussi. Comme produit de fonctions
positives et décroissantes,

φ décroit sur R∗
+.

Q28. Par comparaison série-intégrale, la série∑
n⩾1 φ(n) est de même nature que l’intégrale∫ +∞

0 φ(t) dt. Et comme elles convergent toutes les
deux, on a directement l’encadrement voulu :∫ +∞

1

xt

tα
dt ⩽ fα(x) ⩽

∫ +∞

0

xt

tα
dt.

Q29. D’une part, grâce à Q26,∫ +∞

0

xt

tα
dt = I(x) = (− ln(x))α−1 Γ (1 − α).

Or − ln(x) = − ln(1 − (1 − x)) et quand x → 1−,
− ln(x) ∼ 1 − x, ou encore

− ln(x)
1 − x

→ 1

donc (
− ln(x)
1 − x

)α−1
→ 1

et (− ln(x))α−1 ∼ (1 − x)α−1. Ainsi,

I(x) ∼ Γ (1 − α)
(1 − x)1−α

.

D’autre part,∫ +∞

1

xt

tα
dt = I(x) −

∫ 1

0

xt

tα
dt.

De plus,

0 ⩽
∫ 1

0

xt

tα
dt ⩽

∫ 1

0

1
tα

dt = 1
1 − α

.

Ainsi, quand x → 1−,
∫ 1

0
xt

tα dt est négligeable devant
I(x) qui est un infiniment grand, et∫ +∞

1

xt

tα
dt ∼

x→1−
I(x).

Finalement, au voisinage de 1−,

fα(x) ∼ Γ (1 − α)
(1 − x)1−α

.
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