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Quatrième devoir surveillé

Durée 4 h
Les calculatrices sont interdites

PROBLÈME 1
[CCINP24]

File d’attente

Toutes les variables aléatoires sont définies sur un
même espace probabilisé (Ω,A ,P).

On s’intéresse à une file d’attente à un guichet.
À l’instant 0, la file contient un client. On suppose
qu’à chaque instant k ∈ N∗ il peut arriver au plus un
nouveau client dans la file.

Pour tout k ∈ N∗, on note Xk la variable aléatoire
qui vaut 1 si un nouveau client arrive à l’instant k et
0 sinon.

On suppose que (Xk)k∈N∗ est une suite de variables
aléatoires indépendantes et identiquement distribuées
selon une loi de Bernoulli de paramètre p ∈ ]0, 1[.

On repère chaque client par un indice qui donne
son ordre d’arrivée dans la file : par définition, le
client initialement présent a pour indice n = 0, le
premier nouvellement arrivé a pour indice n = 1, etc.

On rappelle que la fonction génératrice d’une va-
riable aléatoire X à valeurs dans N est la fonction
notée GX définie par :

GX(t) =
+∞∑
j=0

P(X = j) tj .

Partie I – Temps d’arrivée du n-ième
client

Q1. On note T1 la variable aléatoire égale au temps
écoulé entre le temps 0 et le temps où arrive le client
d’indice 1.

Justifier que pour tout k ∈ N∗,

P(T1 = k) = (1 − p)k−1 p.

Q2. On note A l’événement « aucun nouveau client
n’arrive dans la file ».

Exprimer A en fonction des événements {T1 = k},
k ∈ N∗. En déduire P(A). Interpréter.

Q3. Déterminer le rayon de convergence R de la fonc-
tion génératrice de T1, puis calculer sa somme.

Q4. En déduire l’espérance et la variance de T1.

Q5. Pour tout n ∈ N∗, on note Tn la variable aléa-
toire égale au temps écoulé entre l’arrivée du client
d’indice n−1 et le client d’indice n. On admet que les
variables aléatoires Tn sont indépendantes de même
loi.

On note Dn = T1 + · · · + Tn la variable aléatoire
qui donne le temps d’arrivée du client d’indice n.

Calculer l’espérance, la variance et la fonction gé-
nératrice GDn

de Dn.

Q6. Rappeler le développement en série entière de
(1 + x)α au voisinage de x = 0 pour α ∈ R.

En déduire le développement en série entière de
GDn

en 0 et montrer que pour tout (k, n) ∈ (N∗)2 :

P(Dn = k) =

0 si k < n,(
k − 1
k − n

)
pn (1 − p)k−n sinon.

Partie II – Étude du comportement de
la file

II.1 - Une suite récurrente
Soient a > 0 et

f :
{
R → R
x 7→ exp(a(x− 1)).

On s’intéresse au comportement de la suite
(zn)n∈N∗ définie par :

z1 ∈ ]0, 1[ et ∀n ∈ N∗, zn+1 = f(zn).

Q7. Montrer que pour tout n ∈ N∗, zn ∈ ]0, 1[ et
zn+1 − zn est du même signe que z2 − z1.

Q8. En déduire que (zn)n∈N∗ converge vers une limite
ℓ ∈ [0, 1] vérifiant f(ℓ) = ℓ.

Q9. Soit la fonction

ψ :
{

]0, 1] → R
x 7→ ln(x) − a(x− 1).

Montrer que pour tout x > 0, on a :
0 ⩽ ψ(x) ⇐⇒ f(x) ⩽ x et ψ(x) = 0 ⇐⇒ f(x) = x.

Q10. On suppose dans cette question que a ⩽ 1.
Étudier le signe de ψ et montrer qu’elle ne s’annule

qu’en x = 1.
En déduire que zn −−−−−→

n→+∞
1.

Q11. On suppose dans cette question que a > 1.
Étudier le signe de ψ et montrer que l’équation

f(x) = x d’inconnue x ∈ [0, 1] admet exactement
deux solutions α et 1 avec α ∈ ]0, 1[ qu’on ne cher-
chera pas à expliciter.

En distinguant les cas z1 ∈ [0, α[ et z1 ∈ ]α, 1[,
montrer que zn −−−−−→

n→+∞
α.
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II.2 - Groupes de clients

On suppose que les clients de la file d’attente sont
servis suivant leur ordre d’arrivée par un unique ser-
veur et que la durée de service de chaque client est
une variable aléatoire qui suit la loi de Poisson de
paramètre λ > 0 : pour tout k ∈ N, le service a une

durée k avec la probabilité e−λ λ
k

k! .

On rappelle qu’initialement, la file contient un
unique client : le client d’indice 0.

On note S la variable aléatoire égale à la durée
de service de ce client : comme à chaque instant il
arrive au plus un nouveau client, il peut arriver entre
0 et S nouveaux clients pendant le temps de passage
au guichet du client d’indice 0. Les variables S et
(Xn)n∈N∗ sont supposées indépendantes.

On appelle « clients du premier groupe » les clients
qui sont arrivés pendant que le client d’indice 0 était
servi. Par récurrence, pour tout k ⩾ 2, on définit les
clients du k-ième groupe comme étant les clients qui
sont arrivés pendant que ceux du (k− 1)-ième groupe
étaient servis.

Pour tout k ⩾ 1, on note Vk la variable aléatoire
égale au nombre de clients du k-ième groupe.

Par construction, pour n ∈ N∗, si le n-ième groupe
est vide, alors l’événement {Vk = 0} est réalisé pour
tout k ⩾ n.

Q12. Quelle est la situation concrète décrite par l’évé-
nement Z =

⋃
n∈N∗

{Vn = 0} ?

Q13. Quelle est la loi du nombre Nn de clients qui
sont arrivés dans la file d’attente dans l’intervalle de
temps [[1, n]] ?

Q14. Pour tout (n, k) ∈ N2, calculer

P(V1 = k |S = n).

En déduire que V1 suit une loi de Poisson dont on
précisera le paramètre.

Q15. On note zn = P(Vn = 0). Montrer que (zn)n∈N∗

converge et que P(Z) = lim
n→+∞

zn.

Q16. Justifier que pour tout (j, n) ∈ N2,

P(Vn+1 = 0 |V1 = j) = P(Vn = 0)j .

On distinguera le cas j = 0.

Q17. Montrer que pour tout n ∈ N∗,

zn+1 = exp(λp(zn − 1)).

Q18. Déterminer, suivant les valeurs de λp, la limite
de la suite (zn)n∈N∗ . Interpréter.

EXERCICE
[CCINP24]

Équivalent de Stirling

Q19. Soit x ∈ R. Montrer que
∫ +∞

0
tx−1 e−t dt

converge si, et seulement si, x > 0.
Pour tout x > 0, on note :

Γ (x) =
∫ +∞

0
tx−1 e−t dt.

Q20. Montrer que pour tout x > 0, Γ (x+1) = xΓ (x).
En déduire que pour tout n ∈ N∗ :

Γ (n) = (n− 1)!.

Q21. On admet que l’intégrale
∫ +∞

0
e−t2

dt converge

et qu’elle vaut
√
π

2 .
Montrer que pour tout n ∈ N :

Γ

(
n+ 1

2

)
= (2n)!

22nn!
√
π.

Q22. Pour tout k ∈ N∗, on note

ρk = ln k −
∫ k+ 1

2

k− 1
2

ln tdt.

Montrer que pour tout n ∈ N∗ :

lnΓ (n) =
∫ n− 1

2

1
2

ln tdt+
n−1∑
k=1

ρk.

On remarquera que pour n = 1, par convention, la
somme des ρk est nulle.

Q23. Montrer que pour tout k ∈ N∗ :

ρk =
∫ 1

2

0
(2 ln k − ln(k + t) − ln(k − t))dt

=
∫ 1

2

0
− ln

(
1 − t2

k2

)
dt.

Q24. En déduire que
∑

k∈N∗

ρk converge.

Q25. Montrer qu’il existe c ∈ R tel que, lorsque
n → +∞ :

lnΓ (n) =
(
n− 1

2

)
lnn− n+ c+ o(1).

En déduire que lorsque n → +∞ :
Γ (n) ∼ ecnn− 1

2 e−n.

Q26. Pour tout x > 0 et tout n ∈ N∗, on admet

que t 7→ tx−1
(

1 − t

n

)n

est intégrable sur [0, n[ et on
note :

Γn(x) =
∫ n

0
tx−1

(
1 − t

n

)n

dt.

Montrer que pour tout x > 0 et tout n ∈ N∗ :

Γn(x) = nx

∫ 1

0
ux−1 (1 − u)n du.
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Q27. Montrer que pour tout n ∈ N∗ :

∀x > 0, Γn(x) = nxn!
x(x+ 1) · · · (x+ n) .

Q28.* On définit la fonction 1]0,n[ sur R+ en posant

1]0,n[(t) =
{

1 si t ∈ ]0, n[,
0 sinon.

En remarquant que

Γn(x) =
∫ +∞

0
1]0,n[(t) tx−1

(
1 − t

n

)n

dt,

utiliser le théorème de convergence dominée pour
montrer que pour tout x > 0 :

Γn(x) −−−−−→
n→+∞

Γ (x).

En déduire que pour tout x > 0 :

Γ (x) = lim
n→+∞

nxn!
x(x+ 1) · · · (x+ n) .

Q29. Montrer que pour tout x > 0,

Γ (x+ n)
Γ (n)nx

−−−−−→
n→+∞

1.

En déduire que ec =
√

2π où c est défini à la question
Q25.

On pourra faire appel aux résultats des questions
Q19 et Q20.

PROBLÈME 2
[CCINP22]

Étude de séries de pile ou de face

Présentation générale
On considère un espace probabilisé (Ω,A,P) mo-

délisant une succession infinie de lancers indépendants
d’une pièce équilibrée (c’est-à-dire donnant pile avec
la probabilité 1/2 et face avec la probabilité 1/2).
Pour tout entier k ∈ N∗, on désigne par Pk l’évène-
ment [le k-ième lancer de la pièce donne pile] et par
Fk l’évènement [le k-ième lancer de la pièce donne
face].

On appelle série une succession de lancers amenant
le même côté de la pièce. La série no 1 commence au
premier lancer et se poursuit jusqu’à ce qu’un des
lancers suivants donne un résultat différent du pre-
mier lancer. De même, la série no 2 commence au
lancer suivant la fin de la série no 1 et se termine au
lancer précédant un changement de côté. On définit
de même les séries suivantes.

Voici deux exemples pour illustrer la définition des
séries donnée ci-dessus :

Exemple 1 :
P1 ∩ P2︸ ︷︷ ︸
série no 1

∩ F3︸︷︷︸
série no 2

∩ P4 ∩ P5 ∩ P6 ∩ P7︸ ︷︷ ︸
série no 3

∩ F8 ∩ · · ·

Exemple 2 :

F1 ∩ F2 ∩ F3︸ ︷︷ ︸
série no 1

∩ P4 ∩ P5 ∩ P6 ∩ P7 ∩ P8︸ ︷︷ ︸
série no 2

∩

(+∞⋂
k=9

Fk

)
︸ ︷︷ ︸

série no 3

.

Partie I – Étude de la longueur de la
première série

Dans cette partie, nous allons étudier la longueur
de la première série. On définit la variable aléatoire
L1 de la manière suivante :
— si la série no 1 ne se termine pas (ce qui arrive si

et seulement si n’on obtient que des piles ou que
des faces), on pose L1 = 0 ;

— sinon, on désigne par L1 la longueur de la série
no 1.

Ainsi, si l’évènement donné dans l’exemple 1 est réa-
lisé, alors on a L1 = 2 tandis que si l’évènement donné
dans l’exemple 2 est réalisé, alors on a L1 = 3.

I.1 - Calcul de la somme d’une série entière

Q30. Rappeler (sans le démontrer) le rayon de conver-
gence et la somme de la série entière :∑

k⩾0
xk.

Q31. En déduire que pour tout x ∈ ]−1, 1[, la série∑
k⩾0

kxk converge et que
+∞∑
k=0

kxk = x

(1 − x)2 .

I.2 - Étude de L1
Dans cette partie, on considère un entier k ∈ N∗.

Q32. Exprimer l’évènement (L1 = k) en fonction des
évènements Pi et Fi pour i ∈ [[1, k + 1]].

Q33. Montrer que P(L1 = k) = 2−k.

Q34. En déduire la valeur de P(L1 = 0).

Q35. Démontrer que la variable aléatoire L1 admet
une espérance, puis déterminer sa valeur. Que repré-
sente ce nombre par rapport au problème étudié dans
ce problème ?

Partie II – Étude du nombre de séries
Pour tout entier n ∈ N∗, on note Nn le nombre

de séries apparues lors des n premiers lancers. Par
exemple, si l’évènement de l’exemple 1 dans la pré-
sentation est réalisé, alors on a :

N1 = N2 = 1, N3 = 2,
N4 = N5 = N6 = N7 = 3 et N8 = 4.

Jusqu’à la fin du problème, on considère un entier
n ∈ N∗.
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II.1 - Généralités

Q36. Déterminer les lois de N1 et N2.

Q37. Quel est l’ensemble des valeurs prises par la
variable aléatoire Nn ?

II.2 - Relation de récurrence pour la loi de Nn

Dans cette sous-partie, on détermine une relation
de récurrence entre la loi de Nn+1 et la loi de Nn.

Q38. Soit k ∈ [[1, n+ 1]]. Justifier que l’on a l’égalité
d’évènements :

(Nn+1 = k) ∩ Pn ∩ Pn+1 = (Nn = k) ∩ Pn ∩ Pn+1,

puis en déduire que :

P((Nn+1 = k) ∩ Pn ∩ Pn+1) = 1
2 P((Nn = k) ∩ Pn).

Dans la suite, on admet que l’on a pour tout
k ∈ [[1, n+ 1]] les relations :

P((Nn+1 =k) ∩ Fn ∩ Fn+1) = 1
2 P((Nn =k) ∩ Fn),

P((Nn+1 =k) ∩ Pn ∩ Fn+1) = 1
2 P((Nn =k−1) ∩ Pn),

P((Nn+1 =k) ∩ Fn ∩ Pn+1) = 1
2 P((Nn =k−1) ∩ Fn).

Q39. En utilisant la formule des probabilités totales
avec le système complet d’évènements :

(Pn ∩ Pn+1, Fn ∩ Fn+1, Fn ∩ Pn+1, Pn ∩ Fn+1)

et les relations précédentes, montrer que l’on a pour
tout k ∈ [[1, n+ 1]] la relation :

P(Nn+1 = k) = 1
2 P(Nn = k) + 1

2 P(Nn = k − 1).

II.3 - Fonction génératrice, loi et espérance
de Nn

Pour tout m ∈ N∗, on note Gm : R → R la fonc-
tion génératrice de la variable aléatoire Nm, dont on
rappelle la définition :

∀x ∈ R, Gm(x) =
m∑

k=1
P(Nm = k)xk.

En particulier, on déduit des résultats précédents (on
ne demande pas de le vérifier) que :

∀x ∈ R, G1(x) = x.

Q40. Déduire de Q39 que pour tout x ∈ R, on a la
relation :

Gn+1(x) = 1 + x

2 Gn(x).

Q41. Déterminer une expression explicite de Gn(x)
pour tout n ∈ N∗ et tout x ∈ R.

Q42. Rappeler l’expression de l’espérance de Nn en
fonction de sa fonction génératrice Gn. En déduire
l’espérance de la variable aléatoire Nn.

Q43. Déterminer la loi de la variable aléatoire Nn à
partir de l’expression de Gn.

4 4


