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Quatrieme devoir surveillé

Durée 4 h

Les calculatrices sont interdites

PROBLEME 1
[CCINP24]

File d’attente

Toutes les variables aléatoires sont définies sur un
méme espace probabilisé (£2, o7, P).

On s’intéresse a une file d’attente & un guichet.
A Tinstant 0, la file contient un client. On suppose
qu’a chaque instant & € N* il peut arriver au plus un
nouveau client dans la file.

Pour tout k£ € N*, on note X}, la variable aléatoire
qui vaut 1 si un nouveau client arrive a Iinstant k et
0 sinon.

On suppose que (X} )ren+ est une suite de variables
aléatoires indépendantes et identiquement distribuées
selon une loi de Bernoulli de parametre p € |0, 1].

On repeére chaque client par un indice qui donne
son ordre d’arrivée dans la file : par définition, le
client initialement présent a pour indice n = 0, le
premier nouvellement arrivé a pour indice n = 1, etc.

On rappelle que la fonction génératrice d’une va-
riable aléatoire X a valeurs dans N est la fonction
notée Gx définie par :

Partie I — Temps d’arrivée du n-iéme
client

Q1. On note T} la variable aléatoire égale au temps
écoulé entre le temps 0 et le temps ou arrive le client
d’indice 1.
Justifier que pour tout k € N*,
P(T) = k)= (1-p)*'p.
Q2. On note A I’événement « aucun nouveau client
n’arrive dans la file ».

Exprimer A en fonction des événements {17 = k},
k € N*. En déduire P(A). Interpréter.

Q3. Déterminer le rayon de convergence R de la fonc-
tion génératrice de 717, puis calculer sa somme.

Q4. En déduire 'espérance et la variance de T7.

Q5. Pour tout n € N*, on note T, la variable aléa-
toire égale au temps écoulé entre 'arrivée du client
d’indice n — 1 et le client d’indice n. On admet que les
variables aléatoires T,, sont indépendantes de méme
loi.

On note D, = T1 + --- + T, la variable aléatoire
qui donne le temps d’arrivée du client d’indice n.

Calculer I'espérance, la variance et la fonction gé-
nératrice Gp, de D,,.

Q6. Rappeler le développement en série entiere de
(14 x)® au voisinage de = 0 pour « € R.

En déduire le développement en série entiere de
Gp, en 0 et montrer que pour tout (k,n) € (N*)? :

0 si k <n,

P(D, = k) = —1
( ) (:_n>p"(1—p)k_" sinon.

Partie II — Etude du comportement de
la file

I1.1 - Une suite récurrente

Soient a > 0 et
f R — R
"1z — exp(a(z—1)).
On ¢s’intéresse au comportement de la suite
(2n)nen+ définie par :

z1 €10,1[ et Vn € N*, 2,11 = f(zp).

Q7. Montrer que pour tout n € N*, z, € ]0,1] et
Zn+1 — Zn est du méme signe que 2z — 2.

Q8. En déduire que (2, )nen+ converge vers une limite
¢ € [0,1] vérifiant f(¢) = ¢.

Q9. Soit la fonction
" 10,1] — R
1 2 o~ In(x)—a(z—-1).

Montrer que pour tout =z > 0, on a
0<Y(z) <= fz) <z et Pp(r) =0« f(z) ==.

Q10. On suppose dans cette question que a < 1.
Etudier le signe de 1 et montrer qu’elle ne s’annule
qu’en x = 1.

En déduire que z,, —— 1.
n——+oo

Q11. On suppose dans cette question que a > 1.
Etudier le signe de 1 et montrer que 1’équation
f(z) = x d’inconnue z € [0,1] admet exactement
deux solutions « et 1 avec o € |0, 1[ qu’on ne cher-
chera pas a expliciter.
En distinguant les cas z1 € [0,a] et z1 € Jo, 1],

montrer que z, — Q.
n——+00
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I1.2 - Groupes de clients

On suppose que les clients de la file d’attente sont
servis suivant leur ordre d’arrivée par un unique ser-
veur et que la durée de service de chaque client est
une variable aléatoire qui suit la loi de Poisson de

parametre A > 0 : pour tout k£ € N, le service a une
Ak
A

k!

On rappelle qu’initialement, la file contient un
unique client : le client d’indice 0.

On note S la variable aléatoire égale a la durée
de service de ce client : comme a chaque instant il
arrive au plus un nouveau client, il peut arriver entre
0 et .S nouveaux clients pendant le temps de passage
au guichet du client d’indice 0. Les variables S et
(X, )nen+ sont supposées indépendantes.

durée k avec la probabilité e~

On appelle « clients du premier groupe » les clients
qui sont arrivés pendant que le client d’indice 0 était
servi. Par récurrence, pour tout k > 2, on définit les
clients du k-iéme groupe comme étant les clients qui
sont arrivés pendant que ceux du (k — 1)-iéme groupe
étaient servis.

Pour tout k£ > 1, on note Vj, la variable aléatoire
égale au nombre de clients du k-ieme groupe.

Par construction, pour n € N*| si le n-ieme groupe
est vide, alors 1’événement {V}, = 0} est réalisé pour
tout £ > n.

Q12. Quelle est la situation concrete décrite par I’évé-
nement Z = U {V., =0}7
neN*

Q13. Quelle est la loi du nombre N,, de clients qui

sont arrivés dans la file d’attente dans 'intervalle de

temps [1,n] ?

Q14. Pour tout (n,k) € N2, calculer
P(Vi=k|S=n).

En déduire que V; suit une loi de Poisson dont on
précisera le parameétre.

Q15. On note z, = P(V,, = 0). Montrer que (2, )nen~
converge et que P(Z) = lim z,.
n——+4oo
Q16. Justifier que pour tout (j,n) € N2,
P(Voy1 =0[V; = j) = P(V, = 0)’.

On distinguera le cas j = 0.

Q17. Montrer que pour tout n € N*,

zn41 = exp(Ap(zn — 1)).

Q18. Déterminer, suivant les valeurs de Ap, la limite
de la suite (z,)nen+. Interpréter.
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EXERCICE
[CCINP24]

Equivalent de Stirling

+oo
Q19. Soit z € R. Montrer que / t* et dt
0

converge si, et seulement si, z > 0.
Pour tout « > 0, on note :

+oo
/ t* et dt.
0

Q20. Montrer que pour tout z > 0, I'(x+1) = zI'(x).
En déduire que pour tout n € N* :

I'(n) = (n— 1)L

I'(z)

400
Q21. On admet que l'intégrale / e dt converge
0

N

et qu’elle vaut

Montrer que pour tout n € N :

(s 1) - 2

= 22ny
Q22. Pour tout k € N*, on note

V.

k+3
pkzlnk;—/ Intdt.
b4

Montrer que pour tout n € N* :

n—% n—1
In I'(n) :/ lntdt—l—Zpk.
3 k=1

On remarquera que pour n = 1, par convention, la
somme des py, est nulle.

Q23. Montrer que pour tout k& € N* :

P /05(21nk—1n(k+t) Cn(k — 1)) dt

3 +2
[ on(i-£)a

Q24. En déduire que Z Pk converge.
keN~*

Q25. Montrer qu’il existe ¢ € R tel que, lorsque
n — +00 :

InI"(n)

<n—;> Inn—n+c+o(l).

En déduire que lorsque n — +oo :

I'(n) ~ en" e
Q26. Pour tout z > 0 et tout n € N*, on admet
n

Io(z) = /On ot (1 - ;)ndt.

Montrer que pour tout z > 0 et tout n € N* :

1
I(z)=n" / " (1 — u)" du.
0

t n
que t — t7! (1 - ) est intégrable sur [0, n[ et on

note :
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Q27. Montrer que pour tout n € N* :

n®n!

Yz > 0, Fn(m):x(x_i_l)...(x—kn)'

Q28.* On définit la fonction 1jg ,[ sur Ry en posant

1
Lon((t) = {o

En remarquant que

+o0 ¢ n
1 el 2
[ oo (12 1)

utiliser le théoreme de convergence dominée pour
montrer que pour tout z > 0 :

site]0,n,

sinon.

Io(z)

En déduire que pour tout > 0 :

. n®n!
im .
n—too x(x+1) - (x+n)

I'(z)

Q29. Montrer que pour tout x > 0,

I'(z+mn)
I'(n)n=®

n—-+oo

En déduire que e¢ = /27 ot ¢ est défini & la question
Q25.

On pourra faire appel auz résultats des questions
Q19 et Q20.

PROBLEME 2
[CCINP22]

Etude de séries de pile ou de face

Présentation générale

On considére un espace probabilisé ({2, A4, P) mo-
délisant une succession infinie de lancers indépendants
d’une piece équilibrée (c’est-a-dire donnant pile avec
la probabilité 1/2 et face avec la probabilité 1/2).
Pour tout entier £k € N*, on désigne par Py 1'événe-
ment [le k-iéme lancer de la piece donne pile] et par
F Vévénement [le k-iéme lancer de la piece donne
face].

On appelle série une succession de lancers amenant
le méme coté de la piece. La série n° 1 commence au
premier lancer et se poursuit jusqu’a ce qu’un des
lancers suivants donne un résultat différent du pre-
mier lancer. De méme, la série n®2 commence au
lancer suivant la fin de la série n° 1 et se termine au
lancer précédant un changement de c6té. On définit
de méme les séries suivantes.

Voici deux exemples pour illustrer la définition des
séries donnée ci-dessus :

3
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Exemple 1 :
PiNnP N Fjy NPLNPsNPsNP; NFsN---
—_— =~

(07)

—_———

série n° 3

série n° 1 série n° 2 série n° 3

Exemple 2 :

ENEBNFsnNPiNPsNPsnNPrNPg N

série n° 1 série n° 2

Partie I — Etude de la longueur de la
premiere série
Dans cette partie, nous allons étudier la longueur

de la premiere série. On définit la variable aléatoire
L4 de la maniere suivante :

— si la série n°1 ne se termine pas (ce qui arrive si
et seulement si n’on obtient que des piles ou que
des faces), on pose L1 =0;

— sinon, on désigne par L la longueur de la série
n° 1.

Ainsi, si I’événement donné dans ’exemple 1 est réa-

lisé, alors on a L; = 2 tandis que si I’événement donné

dans I'exemple 2 est réalisé, alors on a L, = 3.

I.1 - Calcul de la somme d’une série entiére

Q30. Rappeler (sans le démontrer) le rayon de conver-
gence et la somme de la série entiere :

St

k>0

Q31. En déduire que pour tout = € ]—1, 1], la série

+oo
E ka* converge et que E ka* =
k>0 k=0

(1—z)>

1.2 - Etude de L,
Dans cette partie, on consideére un entier k € N*.

Q32. Exprimer I’événement (L; = k) en fonction des
évenements P; et F; pour ¢ € [1,k + 1].

Q33. Montrer que P(L; = k) =27,
Q34. En déduire la valeur de P(L; = 0).

Q35. Démontrer que la variable aléatoire L1 admet
une espérance, puis déterminer sa valeur. Que repré-
sente ce nombre par rapport au probleme étudié dans
ce probléme ?

Partie IT — Etude du nombre de séries

Pour tout entier n € N*| on note N,, le nombre
de séries apparues lors des n premiers lancers. Par
exemple, si ’événement de I’exemple 1 dans la pré-
sentation est réalisé, alors on a :

N1 =Ny=1, N3 =2,
N4:N5:N6:N7:3€tNg:4.
Jusqu’a la fin du probléme, on considére un entier

n € N*.
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I1.1 - Généralités
Q36. Déterminer les lois de Ny et Ns.

Q37. Quel est I’ensemble des valeurs prises par la
variable aléatoire N,, ?

I1.2 - Relation de récurrence pour la loi de N,
Dans cette sous-partie, on détermine une relation
de récurrence entre la loi de N, 41 et la loi de N,,.

Q38. Soit k € [1,n + 1]. Justifier que 'on a 1'égalité
d’évenements :

(Npt1=k)NP, NPy =Ny=k)NP, NPy,

puis en déduire que :

P((Npi1 = k)N Py Puyy) %P((Nn =k)NP,).

Dans la suite, on admet que 'on a pour tout
k € [1,n 4+ 1] les relations :
P((Npy1=k)NE,NF,11)==P(N,=k)NF,),
P(Npy1=k)NP,NE,y1) = -P(N,=k—=1)NP,)

P((Npyp1=k)NF, N Poy1) = -P(Na=k—1)NF,)

N RN~ N~

Q39. En utilisant la formule des probabilités totales
avec le systéme complet d’événements :

(anpn+17FnﬂFn+1aanPn+17anFn+1)

)

4

4

et les relations précédentes, montrer que I'on a pour
tout k € [1,n + 1] la relation :

1 1
P(Nyi1 = k) = S P(Ny = k) + 5 P(N, = k — 1).

I1.3 - Fonction génératrice, loi et espérance
de N,

Pour tout m € N*, on note G,,, : R — R la fonc-
tion génératrice de la variable aléatoire N,,, dont on
rappelle la définition :

m
Ve e R, Gp(x) = ZP(Nm

k=1

k)x®.

En particulier, on déduit des résultats précédents (on
ne demande pas de le vérifier) que :

Ve € R, Gi(z) = x.

Q40. Déduire de Q39 que pour tout x € R, on a la

relation :
1+=x

G7L+1(x) - 2

Gn(x).

Q41. Déterminer une expression explicite de G,,(x)
pour tout n € N* et tout =z € R.

Q42. Rappeler 'expression de 'espérance de N,, en
fonction de sa fonction génératrice G,,. En déduire
I’espérance de la variable aléatoire N,,.

Q43. Déterminer la loi de la variable aléatoire N, a
partir de I'expression de G,,.



