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Cinquième devoir surveillé

Quelques applications de la formule
de Stirling

[CS23]

Durée 4 h
Calculatrice autorisée

Ce problème propose de démontrer un raffinement
de la formule de Stirling et de l’appliquer à l’étude
des marches aléatoires sur Z.

I Intégrale de Gauss

Le but de cette partie est de calculer l’intégrale
dite de Gauss :

+∞∫
0

e−t2
dt.

Q 1. Montrer que l’intégrale
+∞∫
0

e−t2
dt est absolu-

ment convergente.

On étudie les fonctions f et g définies par

f(x) =
1∫

0

e−(t2+1)x2

t2 + 1 dt et g(x) =
x∫

0

e−t2
dt.

Q 2. Montrer que f est définie sur R et qu’elle est
paire. Calculer f(0).

Q 3. Montrer que f est de classe C1 sur R et donner
l’expression de f ′(x).

Q 4. Montrer que g est définie et de classe C1 sur R.

Q 5. À l’aide d’un changement de variable affine,
montrer que

∀x ∈ R, f ′(x) = −2g′(x)g(x).

Q 6. Vérifier que

∀x ∈ R, f(x) = π

4 − g(x)2.

Q 7. En déduire lim
x→+∞

g(x), puis conclure que

+∞∫
0

e−t2
dt =

√
π

2 .

II Formule de Stirling
Dans cette partie, on propose de démontrer un

raffinement de la formule de Stirling. On va prouver
l’existence d’une suite (qn)n∈N∗ convergente vers 0
telle que

∀n ∈ N∗, n! =
√

2π n

(
n

e

)n(
1 + 1

12n
+ qn

n

)
.

II.A – Pour n ∈ N, on pose In =
+∞∫
0

tn e−t dt.

Q 8. Montrer que la suite (In)n∈N est bien définie.

Q 9. Donner une relation entre In+1 et In, et en
déduire que In = n! pour tout entier naturel n.

II.B – Cette sous-partie est consacrée à la démons-
tration de la formule de Stirling classique

(II.1) n! ∼
n→+∞

√
2π n

(
n

e

)n

.

Q 10. Si n est un entier naturel non nul, déduire de
la question précédente que

n! =
√

n

(
n

e

)n
+∞∫

−
√

n

(
1 + y√

n

)n

e−y
√

n dy.

Pour α ∈ [1, +∞[, on note 1I[−
√

α,+∞[ la fonction
indicatrice de l’intervalle [−

√
α, +∞[ dont on rappelle

qu’elle vaut 1 sur [−
√

α, +∞[ et 0 sur ]−∞, −
√

α [.
On pose pour y ∈ R,

h(α, y) = 1I[−
√

α,+∞[(y)
(

1 + y√
α

)α

e−y
√

α.

Q 11. Démontrer que pour tout y ∈ R, la fonction
α 7→ h(α, y) converge quand α → +∞ et préciser

lim
α→+∞

h(α, y).

Pour x ∈ ]−1, +∞[ ∖ {0} on pose

q(x) = x − ln(1 + x)
x2 .

Q 12. Justifier que q est prolongeable en une fonc-
tion continue sur ]−1, +∞[ que l’on convient de noter
également q.

Q 13. Démontrer que, pour tout x > −1,

q(x) =
1∫

0

u

1 + ux
du.
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Q 14. En déduire que q est une fonction décroissante
sur ]−1, +∞[ et démontrer que pour tout α ∈ [1, +∞[,

∀y ∈ R+, h(α, y) ⩽ (1 + y)e−y

∀y ∈ R−∗, h(α, y) ⩽ e−y2/2.

Q 15. Déduire des questions précédentes la formule
de Stirling (II.1).

II.C – Pour raffiner la formule de Stirling, on intro-
duit les suites réelles (un)n∈N∗ , (vn)n∈N∗ et (wn)n∈N∗

définies par :

un = nn e−n
√

n

n! , vn = ln(un), wn = vn+1 − vn.

Q 16. Vérifier que

wn =
n→+∞

1
12n2 + o

(
1
n2

)
et en déduire la nature de la série numérique

∑
wn.

II.C.1) Soient (an)n∈N∗ une suite réelle positive et
(bn)n∈N∗ une suite réelle strictement positive, telles
que an ∼

n→+∞
bn et la série numérique

∑
bn converge.

Q 17. Soit ε > 0. Montrer qu’il existe un entier na-
turel non nul n0 tel que

∀n ⩾ n0, (1 − ε)bn ⩽ an ⩽ (1 + ε)bn.

Q 18. En déduire que la série numérique
∑

an

converge et que les restes vérifient
+∞∑
k=n

ak ∼
n→+∞

+∞∑
k=n

bk.

II.C.2) Si n est un entier naturel non nul, on pose

Rn =
+∞∑
k=n

1
k2 .

Q 19. Pour tout n ∈ N∗, établir que

1
(n + 1)2 ⩽

n+1∫
n

1
t2 dt ⩽

1
n2 .

Q 20. En déduire un équivalent simple de Rn lorsque
n → +∞.

II.C.3)

Q 21. Déduire des questions précédentes un équi-

valent de
+∞∑
k=n

wk lorsque n → +∞.

Q 22. En déduire qu’il existe une suite (qn)n∈N∗

convergente vers 0 telle que

∀n ∈ N∗, n! =
√

2π n

(
n

e

)n(
1 + 1

12n
+ qn

n

)
.

III Étude de deux séries entières et
application à une marche aléatoire

Un point se déplace sur un axe gradué. Au départ,
il se trouve à l’origine et à chaque étape il se déplace
suivant le résultat du lancer d’une pièce de monnaie
qui n’est pas supposée équilibrée.

Le déplacement du point est formalisé de la ma-
nière suivante. Dans l’espace probabilisé (Ω, A,P), on
considère une suite de variables aléatoires (Xn)n∈N∗

à valeurs dans {−1, 1}, indépendantes, et telles que,
pour tout n ∈ N∗,

P(Xn = 1) = p et P(Xn = −1) = q,

où p ∈ ]0, 1[ et q = 1 − p. Les variables aléatoires
(Xn)n∈N∗ représentent les résultats des lancers suc-
cessifs de la pièce de monnaie.

L’abscisse Sn du point à l’issue du n-ième lancer
est alors définie par :

S0 = 0,

Sn =
n∑

k=1
Xk ∀n ∈ N∗.

On admet que, si (Yn)n∈N∗ est une suite de va-
riables aléatoires indépendantes suivant toutes la
même loi alors, pour tout n ⩾ 2, quel que soit l’entier
k compris entre 1 et n − 1, les variables aléatoires

n−k∑
i=1

Yi et
n∑

i=k+1
Yi

suivent la même loi.
On se propose de calculer la probabilité que le

point ne revienne jamais à l’origine.
On remarque que le point ne peut revenir à l’ori-

gine (i.e. Sk = 0) qu’après un nombre pair de lancers
de la pièce de monnaie (i.e. k = 2n).

On introduit alors les suites (an)n∈N et (bn)n∈N
définies par a0 = 1, b0 = 0 et

∀n ∈ N∗, an = P(S2n = 0)
et bn = P([S1 ̸= 0] ∩ · · · ∩ [S2n−1 ̸= 0] ∩ [S2n = 0])

et les séries entières

A(x) =
+∞∑
n=0

an x2n et B(x) =
+∞∑
n=0

bn x2n.

III.A –

Q 23. Quelle est la loi de la variable aléatoire
1
2 (X1 + 1) ? En utilisant une loi binomiale, calcu-
ler l’espérance et la variance de la variable Sn.

Q 24. Écrire une fonction Python qui prend en argu-
ment le nombre n de lancers et renvoie le nombre de
retours au point à l’origine.

On pourra utiliser la fonction Python
random.random() qui renvoie un nombre flottant
pseudo-aléatoire dans l’intervalle [0, 1[.
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Q 25. Vérifier que pour tout n ∈ N∗,

an =
(

2n

n

)
pn qn.

Q 26. En déduire le rayon de convergence R de la
série entière

∑
an x2n.

Q 27. Pour quelles valeurs de p l’expression A(x)
est-elle définie en x = 1 ?

Q 28. En utilisant le développement en série entière
en 0 de 1√

1 − x
, déterminer une expression de A(x).

III.B –

Q 29. Pour n ∈ N∗, en décomposant l’événement
{S2n = 0} selon l’indice de 1er retour du point à

l’origine, établir la relation an =
n∑

k=0
bk an−k.

Q 30. En déduire une relation entre A(x) et B(x) et
préciser pour quelles valeurs de x elle est valable.

Q 31. Conclure que B(x) = 1 −
√

1 − 4pq x2 pour x
dans un intervalle à préciser.

Q 32. Pour quelles valeurs de p l’expression obtenue
à la question précédente pour B(x) est-elle définie en
x = 1 ? Qu’en est-il de l’expression qui définit B(x)
comme somme d’une série entière ?

III.C –

Q 33. En déduire que la probabilité de l’évènement
« le point ne revient jamais en 0 » est égale à |p − q|.

IV Loi de l’arcsinus
Dans cette partie, on reprend les notations de

la partie III et on se place dans le cas particulier
p = q = 1/2. Dans ce cas tous les « chemins » de la
marche aléatoire sont équiprobables : pour n ∈ N∗,

∀(x1, . . . , xn) ∈ {−1, 1}n,

P([S1 = x1] ∩ [S2 = x1 + x2] ∩ · · ·

∩ [Sn = x1 + x2 + · · · + xn]) = 1
2n

.

Pour n ∈ N, on s’intéresse désormais au moment
de la dernière visite en 0 de la marche aléatoire au
cours des 2n premiers pas, c’est-à-dire à la variable
aléatoire Tn définie par

Tn = max{0 ⩽ k ⩽ 2n | Sk = 0}.

On admet dans la suite que Tn est une variable aléa-
toire discrète, définie sur le même espace probabilisé
(Ω, A,P) que la suite de variables aléatoires (Sn)n∈N.

Si x est un réel, on note ⌊x⌋ sa partie entière.

IV.A – Pour n ∈ N∗, on appelle chemin de lon-
gueur n toute ligne polygonale reliant les points
(0, S0), (1, S1), . . ., (n, Sn).

−1

0

1

2

•
(0, S0)

•
(1, S1)

•
(2, S2)

•
(3, S3)

•
(4, S4)

•
(5, S5)

•
(6, S6)

• (7, S7)

Figure 1 Un chemin de longueur 7

Dans cette sous-partie IV.A, n, x et y sont des
entiers naturels tels que n ̸= 0, x ̸= 0 et y ̸= 0.

IV.A.1) On note Nn,x le nombre de chemins reliant
le point (0, 0) au point (n, x).

Q 34. Vérifier que si x ∈ [[−n, n]] et n − x est un
entier pair alors

Nn,x =
(

n

a

)
où a = n + x

2
et que Nn,x = 0 dans le cas contraire.

Q 35. En déduire P(Sn = x).

Q 36. Retrouver ce résultat à l’aide d’une variable
aléatoire bien choisie.

IV.A.2) Principe de réflexion

Q 37. Montrer que le nombre de chemins reliant (0, x)
à (n, y), tout en passant au moins une fois par un
point d’ordonnée 0, est égal au nombre de chemins
quelconques reliant (0, −x) à (n, y).

IV.A.3)

Q 38. En utilisant le principe de réflexion, montrer
que le nombre de chemins reliant (1, 1) à (n, x) sans
jamais rencontrer l’axe des abscisses est égal à

Nn−1,x−1 − Nn−1,x+1.

Q 39. En déduire que pour tout k ∈ N∗,
P([S1 > 0] ∩ . . . ∩ [S2n−1 > 0] ∩ [S2 n = 2k])

= 1
2(P(S2n−1 = 2k − 1) − P(S2n−1 = 2k + 1)).

Q 40. En remarquant que [S2n > 0] =
+∞⋃
k=1

[S2n = 2k],

démontrer que

P([S1 >0]∩· · ·∩ [S2n−1 >0]∩ [S2n >0]) = 1
2 P(S2n =0)

puis que
P([S1 ̸=0]∩· · ·∩ [S2n−1 ̸=0]∩ [S2n ̸=0]) = P(S2n =0).
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IV.B – Soit n ∈ N∗.

Q 41. Montrer que pour tout k ∈ [[0, n]],
P(T2n = 2k) = P(S2k = 0)

× P([S1 ̸= 0] ∩ · · · ∩ [S2n−2k ̸= 0]).

Q 42. En déduire que pour k ∈ [[0, n]],

P(T2n = 2k) =
(

2k

k

)(
2n − 2k

n − k

)
1
4n

.

IV.C – Dans cette sous-partie IV.C, α et β sont
deux réels tels que 0 < α < β < 1.

Q 43. On définit la fonction f par

f(t) =


f(α) si t ∈ [0, α[,

1√
t(1 − t)

si t ∈ [α, β],

f(β) si t ∈ ]β, 1].
En utilisant des sommes de Riemann adaptées à f ,
montrer que

lim
n→+∞

⌊nβ⌋∑
k=⌊nα⌋+1

1√
k

√
n − k

=
β∫

α

1√
t(1 − t)

dt.

Q 44. À l’aide de la partie II, justifier qu’il existe
une suite (εn)n∈N convergente vers 1 telle que(

2n

n

)
= 4n

√
nπ

(
1 − εn

8n

)
.

Q 45. En déduire que

lim
n→+∞

( ⌊nβ⌋∑
k=⌊nα⌋+1

(
2k

k

)(
2n − 2k

n − k

)
1
4n

− 1
π

⌊nβ⌋∑
k=⌊nα⌋+1

1√
k (n − k)

)
= 0.

Q 46. Montrer alors que

lim
n→+∞

P
(

T2n

2n
∈ [α, β]

)
= 2

π

(
arcsin(

√
β) − arcsin(

√
α)
)

.

Ce résultat a des conséquences assez surprenantes
au premier abord. Par exemple

lim
n→+∞

P
(

T2n

2n
⩽

1
2

)
= 1

2

s’interprète ainsi : si deux personnes parient chacune
un euro chaque jour de l’année à un jeu de hasard
équilibré, alors avec la probabilité 1/2, un des deux
joueurs sera en tête du premier juillet au 31 décembre.

••• FIN •••

4 4


