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Sixième devoir surveillé

D’après [E3A12]
Durée 3 h

L’usage de calculatrices est interdit.

La présentation, la lisibilité, l’orthographe, la
qualité de la rédaction, la clarté et la précision des
raisonnements entreront pour une part importante
dans l’appréciation des copies. En particulier, les
résultats non encadrés et non justifiés ne seront pas
pris en compte.

Ce problème a pour objet l’étude d’endomor-
phismes sur des espaces vectoriels réels construits
à l’aide de formes linéaires.

On rappelle qu’une forme linéaire sur un R-espace
vectoriel E est une application linéaire définie sur E
et à valeurs dans R.

Pour tout endomorphisme f d’un espace vectoriel
et tout entier p ⩾ 1, on note fp l’endomorphisme
composé f ◦ · · · ◦ f︸ ︷︷ ︸

p fois
.

Les deux premières parties sont consacrées à deux
exemples et la suivante à une étude théorique de tels
endomorphismes. Les trois parties de ce problème
sont largement indépendantes entre elles.

Première partie

L’espace R3 est muni de sa base canonique (⃗ı, ȷ⃗, k⃗ ).
À tout point M = (x, y, z) de R3, on associe le vecteur
colonne

XM =

 x
y
z

 .

On considère la matrice

A = 1
9

 2 −2 −1
4 −4 −2

−4 4 2


ainsi que l’ensemble

S = {M ∈ R3 | X⊤
M AXM = 0}.

On notera f l’endomorphisme canoniquement associé
à la matrice A.

1. Vérifier que M ∈ S si et seulement si

(2x − 2y − z)(x + 2y − 2z) = 0

et en déduire que S est la réunion de deux plans.

2. On se propose dans cette question de retrouver la
nature de S par une autre approche. On considère les
vecteurs
e⃗1 = 1

3 (1, 2, −2), e⃗2 = 1
3 (2, 1, 2), e⃗3 = 1

3 (2, −2, −1).
(a) Vérifier que C = (e⃗1, e⃗2, e⃗3) est une base de R3

puis calculer f(e⃗1), f(e⃗2), f(e⃗3).
(b) En déduire que A est semblable à la matrice

U =

 0 0 1
0 0 0
0 0 0


et justifier qu’il existe une matrice inversible P ,
que l’on précisera, telle que U = P ⊤AP .
(c) Soit un point M de R3. On note X ′

M le vecteur
colonne de ses coordonnées dans la base C.

(i) Écrire XM en fonction de P et X ′
M .

(ii) En déduire que M ∈ S si et seulement si
ses coordonnées (x′, y′, z′) dans la base C véri-
fient x′z′ = 0 et retrouver la nature géométrique
de S.

3. (a) Déterminer le rang de f et calculer f ◦ f .
(b) Déterminer une forme linéaire ϕ sur R3 et un
vecteur c⃗ ∈ R3 tels que

∀v⃗ ∈ R3, f(v⃗ ) = ϕ(v⃗ ) c⃗.

Deuxième partie

On considère les trois suites (un)n∈N, (vn)n∈N et
(wn)n∈N définies par leurs premiers termes

u0 = −1, v0 = 2, w0 = −1
et par les relations de récurrence

∀n ∈ N,


un+1 = − 1

4 (3un − vn + wn)
vn+1 = − 1

2 (un + wn)
wn+1 = 1

4 (un − vn − wn).

1. (a) Exprimer vn+1+2wn+1 en fonction de vn+2wn

et en déduire que vn = −2wn pour tout n ⩾ 0.
(b) En déduire que un = −3wn pour tout n ⩾ 1.
(c) En déduire, pour n ⩾ 1, les expressions de wn,
un et vn en fonction de n uniquement puis prouver
la convergence de ces trois suites.

2. On se propose dans cette question de retrouver les
limites de ces suites par une autre approche.

(a) Déterminer une matrice M ∈ M3(R) telle

qu’en posant Xn =

 un

vn

wn

, on ait

∀n ∈ N, Xn+1 = M Xn.

On notera encore f l’endomorphisme canonique-
ment associé à la matrice M .
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(b) Déterminer une base du noyau et de l’image
de f . En déduire que R3 = Ker f ⊕ Im f .
(c) Déterminer la matrice de f dans une base adap-
tée à cette somme directe.
(d) En déduire l’existence d’une matrice diago-
nale D et d’une matrice inversible P telles que
D = P −1 M P et préciser D et P .
(e) Retrouver les limites des suites (un), (vn) et
(wn) en posant Yn = P −1 Xn.

Troisième partie

Soit E un R-espace vectoriel de dimension finie
n ⩾ 2 ; on fixe un vecteur a⃗ non nul de E ainsi
qu’une forme linéaire u sur E qui n’est pas la forme li-
néaire nulle. On considère enfin l’application f définie
sur E par

∀x⃗ ∈ E, f(x⃗) = u(x⃗) a⃗.

1. Vérifier que f est un endomorphisme de E et pré-
ciser son rang.

2. Les quatre questions suivantes portent sur les élé-
ments propres.

(a)* Vérifier que 0 est une valeur propre de f et
exprimer son sous-espace propre associé à l’aide
de Ker u.
(b)* On suppose que λ est une valeur propre non
nulle de f et que x⃗ est un vecteur propre associé.
Montrer que x⃗ est colinéaire à a⃗ et que λ = u(⃗a).
(c)* En déduire, en distinguant les cas u(⃗a ) = 0
et u(⃗a) ̸= 0, toutes les valeurs propres de f et les
sous-espaces propres associés.
(d)* Énoncer une condition nécessaire et suffisante
portant sur u(⃗a) pour que E = Ker f ⊕ Im f .

3. On adopte un autre point de vue pour établir cette
somme directe.

(a) Pour tout x⃗ ∈ E et tout entier p ∈ N∗, démon-
trer que

fp(x⃗) = u(x⃗)(u(⃗a))p−1 a⃗.

(b) On suppose que u(⃗a) = 0. Vérifier que f2 = O
(endomorphisme nul) et en déduire que la somme
Ker f + Im f n’est pas directe.
(c) On suppose que u(⃗a ) ̸= 0. Trouver un poly-
nôme annulateur de f de degré 2 et en déduire que

E = Ker f ⊕ Im f.

On considère à présent un endomorphisme g de E
de rang 1.

4. Démontrer qu’il existe un vecteur non nul b⃗ et une
forme linéaire v sur E, qui n’est pas la forme linéaire
nulle, tels que

∀x⃗ ∈ E, g(x⃗) = v(x⃗) b⃗.

5. On suppose que g2 ̸= O (endomorphisme nul).
Montrer qu’il existe un réel α ̸= 0 et une base B de E
dans laquelle g a pour matrice la matrice diagonale

0
. . .

0
α

 .

6. On suppose que g2 = 0 et on considère un vec-
teur e⃗n tel que g(e⃗n) ̸= 0.

(a) Énoncer le théorème de la base incomplète.
(b) Justifier l’existence de vecteurs e⃗2, . . . , e⃗n−1
tels que (g(e⃗n), e⃗2, . . . , e⃗n−1) soit une base
de Ker g.
(c) En déduire l’existence d’une base B de E dans
laquelle g a pour matrice

0 . . . . . . 0 1
0 . . . . . . 0 0
... 0 ...

...
0 . . . . . . 0 0

 .

7. Déduire des questions 5 et 6 que deux matrices
carrées de rang 1 de Mn(R) sont semblables si et
seulement si elles ont même trace.
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