
Corrigés des exercices de la dixième feuille

86 CCP

1. Pour n ∈ N∗, considérons les fonctions

fn : R∗
+ → R, x 7→ (−1)n

1 + n2 x2 .

Définition. Pour x > 0 fixé, la suite numérique
(|fn(x)|)n⩾1 décroit vers 0, donc d’après le théo-
rème spécial des séries alternées, la série numérique∑

n⩾1 fn(x) converge. Donc la série de fonctions∑
n⩾1 fn converge simplement sur R∗

+ et S y est dé-
finie.

Continuité. Pour tout n ∈ N∗, la fonction fn est
continue sur R∗

+. Soient a > 0, x ∈ [a, +∞[ et n ∈ N∗.
On a

|fn(x)| ⩽ 1
n2 a2 .

Or la série
∑

1/(n2 a2) converge et ne dépend pas
de x. Alors la série de fonctions

∑
n⩾1 fn converge nor-

malement donc uniformément sur tout [a, +∞[ ⊂ R∗
+,

donc S est continue sur R∗
+.

Commentaire. Le théorème spécial des séries alternées
aurait permis de montrer directement la convergence
uniforme, mais ici, la convergence normale est aussi
directe.
2. Intégrabilité. On sait déjà que

∑
n⩾1 fn

converge simplement sur R∗
+ et que les fn et S y

sont continues. De plus, pour tout n ⩾ 1,

|fn(x)| ⩽ 1
1 + x2

où x 7→ 1/(1 + x2) est intégrable sur R∗
+, donc fn

l’est aussi. Mais∫ +∞

0

dx

1 + n2 x2 =
[

Arctan(nx)
n

]+∞

0
= π

2n
,

donc
∑

n⩾1
∫
R∗

+
|fn| diverge et le théorème du cours

ne s’applique pas.
Cependant, toujours d’après le théorème spécial

des séries alternées,

|S(x)| =

∣∣∣∣∣
+∞∑
n=1

fn(x)

∣∣∣∣∣ ⩽ |f1(x)| = 1
1 + x2 .

Où l’on voit donc que S est intégrable sur R∗
+.

Commentaire. Les théorèmes du cours sont très puis-
sants, mais pas toujours nécessaires.

87 CCP

1. Soit n ⩾ 2. L’intégrande fn de In est continue
sur R+. De plus, pour t ⩾ 1,

|fn(t)| = tn − t

1 + t2n
∼

t→+∞

1
tn

.

Or la fonction t 7→ 1/tn est intégrable sur [1, +∞[ car
n ⩾ 2 > 1, donc fn l’est aussi et In existe.

2. Utilisons le théorème de convergence dominée.
◦ Les fn sont continues sur R+.
◦ Soit t ∈ R+. La suite (tn) converge vers 0 si t < 1, 1
si t = 1 et +∞ si t > 1. Donc la suite (fn(t)) converge
vers t si t < 1 et 0 si t ⩾ 1. Ainsi, la suite de fonctions
(fn) converge simplement sur R+ vers la fonction

f : t 7→

{
t si t < 1,

0 si t ⩾ 1.

◦ La fonction f est continue par morceaux sur R+.
◦ Soit n ⩾ 2. Pour t ∈ [0, 1],

|fn(t)| = t − tn

1 + t2n
⩽ t.

Pour t > 1,

|fn(t)| = tn − t

1 + t2n
⩽

tn

t2n
= 1

tn
⩽

1
t2 .

Considérons la fonction

φ : t 7→

t si t ⩽ 1,
1
t2 si t > 1,

de sorte que pour tout t ⩾ 0 et n ⩾ 2,

|fn(t)| ⩽ φ(t).

La fonction φ est continue sur R+, car elle l’est
sur R+∖{1} et que ses limites à droite et à gauche en 1
valent 1 = φ(1). De plus, φ est intégrable sur [1, +∞[
car t 7→ 1/t2 l’est. Ainsi, l’hypothèse de domination
est vérifiée.

Alors
• les fn et f sont intégrables sur R+,
• la suite (In) converge et

lim
n→+∞

In =
∫ +∞

0
f(t)dt =

∫ 1

0
tdt = 1

2 .

88 CS

1. Convergence simple. Soit x ∈ [0, π
2 ]. Si

x = 0, fn(x) = 0. Si x ≠ 0, |cos x| < 1 donc
limn→+∞ fn(x) = 0. Il s’ensuit que (fn) converge
simplement sur [0, π

2 ] vers la fonction nulle.

Convergence uniforme. Pour x ∈ [0, π
2 ] et n ⩾ 1,

f ′
n(x) = cosn−1 x(−n sin2 x + cos2 x) donc

f ′
n(x) = 0 ⇐⇒ x = Arctan 1√

n
ou x = π

2 .

Alors, pour x ∈ [0, π
2 ],

|fn(x)| ⩽ fn

(
Arctan 1√

n

)
⩽ sin

(
Arctan 1√

n

)
⩽

1√
n

donc (fn) converge uniformément sur [0, π
2 ] vers la

fonction nulle.
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2. En posant u = cos x,∫ π/2

0
n cosn x sin xdx = n

∫ 1

0
un du = n

n + 1 −−−−−→
n→+∞

1.

3. On voit sans difficulté que (gn) converge simple-
ment vers la fonction nulle sur [0, π

2 ]. Mais comme∫ π/2
0 gn ̸→ 0, (gn) ne converge pas uniformément vers

la fonction nulle sur [0, π
2 ].

89 CCP

Voir l’exemple du cours.

90 CCP

1. Oui, par concavité du sinus sur [0, π
2 ].

2. Soit x ∈ R+. Pour n assez grand, x ⩽ n π
2 , donc

fn(x) = exp
(

n ln
(

1 − sin x

n

))
.

En outre, quand n tend vers +∞, sin x
n ∼ x

n , donc
ln(1− sin x

n ) ∼ − x
n et n ln(1− sin x

n ) ∼ −x. Par conti-
nuité de l’exponentielle en −x, fn(x) ∼ e−x. Ainsi, la
suite de fonctions (fn) converge simplement sur R+
vers la fonction f : x 7→ e−x.
3. Appliquons le théorème de convergence dominée.
Les fn sont continues sur R+, car fn(n π

2 ) = 0 ; la
suite (fn) converge simplement sur R+ vers f ; f est
continue sur R+. Enfin, pour n ∈ N∗ et t ⩾ 0,

fn(t) = exp
(

n ln
(

1 − sin t

n

))
⩽ exp

(
n ln

(
1 − 2

π

t

n

))
⩽ exp

(
−n

2 t

π n

)
= e−2t/π,

où t 7→ e−2t/π est continue et intégrable sur R+.
Alors le théorème s’applique : les fn et f sont

intégrables sur R+ et l’on a

lim
n→+∞

∫ +∞

0
fn =

∫ +∞

0
f = 1.
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1. Sur le segment K = [0, 1], x (1 − x) ⩽ 1
4 , donc

In ⩽ ( 1
4 )n et lim In = 0.

2. Appliquons le théorème de convergence dominée
aux fonctions fn : K → K, x 7→ 4n xn (1 − x)n, de
sorte que 4n In =

∫
K

fn.

◦ Les fonctions fn sont continues sur K.
◦ On a fn( 1

2 ) = 1, et si x ≠ 1
2 , 4x(1 − x) < 1, donc

la suite numérique (fn(x)) tend vers 0. Ainsi, la suite
de fonctions (fn) converge simplement sur K vers la
fonction f , nulle sur K sauf en 1

2 où elle vaut 1.
◦ La fonction f est continue par morceaux sur K.
◦ On a la domination 0 ⩽ fn ⩽ 1, où la fonction
x 7→ 1 est positive, continue et intégrable sur K.

Alors, grâce au théorème susnommé,
• les fn et f sont intégrables sur K ;
• lim

∫
K

fn =
∫

K
f = 0. Ainsi, lim 4n In = 0.

92 CCINP25

1. Nommons R le rayon de convergence cherché.
Comme

∑
an converge absolument, (an) est bor-

née, disons par M , donc |an/n!| ⩽ M/n! Ainsi, R
est minoré par le rayon de convergence de la série
entière

∑
xn/n! On reconnait le développement en

série entière de l’exponentielle, qui a pour rayon de
convergence +∞. Donc R = +∞.
2. Permutons, puis justifions :∫ +∞

0
f(t)e−t dt =

∫ +∞

0

+∞∑
n=0

an tn

n! e−t dt

=
+∞∑
n=0

an

n!

∫ +∞

0
tn e−t dt︸ ︷︷ ︸

= Γ (n + 1) = n!

=
+∞∑
n=0

an.

Les fonctions fn : t 7→ an tn e−t/n! sont toutes
intégrables sur R+, car tn e−t ≪ e−t/2 en +∞. La
série de fonctions

∑
fn converge simplement sur R,

et sa somme t 7→ f(t) e−t est continue sur R. En-
fin,

∫ +∞
0 |fn(t)| dt = |an|, et par hypothèse,

∑
|an|

converge. Alors, la fonction t 7→ f(t)e−t est intégrable
sur R+ et la permutation est permise.

93 CCINP25

1. ◦ Par opérations usuelles, pour tout n ∈ N∗, un

est de classe C 1 sur [0, 1] et pour tout x ∈ [0, 1],

u′
n(x) = 1

n(1 + x
n ) − 1

n
= − x

n(n + x) .

◦ Soit x ∈ [0, 1]. Quand n augmente,

un(x) = x

n
+ O

( 1
n2

)
− x

n
= O

( 1
n2

)
.

Or
∑

n⩾1 1/n2 converge comme série de Riemann
où 2 > 1, donc la série

∑
n⩾1 un(x) converge. Ainsi,

la série de fonctions
∑

n⩾1 un converge simplement
sur [0, 1].
◦ Pour tout n ∈ N∗ et tout x ∈ [0, 1],

|u′
n(x)| = x

n(n + x) ⩽
1
n2 .

Or ce majorant ne dépend pas de x et on l’a
dit,

∑
n⩾1 1/n2 converge, donc la série de fonctions∑

n⩾1 u′
n converge normalement donc uniformément

sur [0, 1].
Alors

• S est bien définie et de classe C 1 sur [0, 1]
• et pour tout x ∈ [0, 1],

S′(x) = −
+∞∑
n=1

x

n(n + x) .

2. D’après le calcul précédent,

S′(1) =
+∞∑
n=1

( 1
n + 1 − 1

n

)
= −1,

où l’on a reconnu une somme télescopique.
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Utilisons le théorème d’intégration des séries de
fonctions sur un intervalle, qui justifiera la conver-
gence et permettra le calcul de cette intégrale.

Calcul formel. Voici un calcul formel, que l’on
justifiera ensuite.∫ 1

0
e−t ln tdt =

∫ 1

0

+∞∑
n=0

(−1)n tn

n! ln tdt(1)

=
+∞∑
n=0

(−1)n

n!

∫ 1

0
tn ln tdt(2)

=
+∞∑
n=0

(−1)n+1

n! (n + 1)2(3)

=
+∞∑
n=1

(−1)n

nn! .(4)

Justification. (1) Oui, grâce au développement en
série entière usuel de l’exponentielle, dont le rayon de
convergence est +∞.
(3) En intégrant par parties, pour tout n ∈ N,∫ 1

0
tn ln tdt =

[
tn+1

n + 1 ln t

]1

0
−

∫ 1

0

tn+1

n + 1
1
t

dt.

L’intégration par parties est permises car les fonctions
manipulées sont de classe C 1 sur ]0, 1], le crochet a
un sens avec les limites usuelles car n + 1 > 0, et
la dernière intégrale n’est plus généralisée, donc elle
converge. Ainsi,∫ 1

0
tn ln tdt = − 1

(n + 1)2 .

(4) Oui !
(2) Pour tout n ∈ N, la fonction fn : t 7→ (−1)n tn

n! ln t

est continue sur ]0, 1], et on vient de voir qu’elle y
est intégrable. De plus,

∑
fn converge simplement

sur ]0, 1] et sa somme f : t 7→ e−t ln t est bien-sûr
continue sur ]0, 1]. Enfin, pour tout n ∈ N,∫ 1

0
|fn| = 1

(n + 1)2 n! ⩽
1
n!

et
∑

1/n! converge donc
∑ ∫ 1

0 |fn| converge.
D’après le théorème annoncé, f est intégrable sur

]0, 1], ce qui justifie comme prévu l’existence de
∫ 1

0 f ,
et l’on peut permuter série et intégrale, ce qui justi-
fie (2).

Valeur approchée. Ainsi,∫ 1

0
e−t ln tdt =

+∞∑
n=1

(−1)n

nn! .

C’est la somme d’une série alternée, redevable du cri-
tère spécial des séries alternées puisque ( 1

nn! ) décroit
vers 0. En vertu de ce théorème, pour tout n ∈ N,∣∣∣∣∣

+∞∑
k=n+1

(−1)k

k k!

∣∣∣∣∣ ⩽ 1
(n + 1)(n + 1)! .

Donc ceci est un majorant de l’erreur commise en
approchant la somme complète par la somme partielle
d’indice n. Pour avoir une erreur inférieure à 10−3, il
suffit de choisir ce majorant inférieur à 10−3, c’est-à-
dire (n + 1)(n + 1)! ⩾ 1 000, soit n = 5. Ainsi, une
valeur approchée de l’intégrale à 10−3 près est

5∑
n=1

(−1)n

nn! = −5 737
7 200 .

Bonus. Voici un peu de Python, pour le plaisir.

import numpy as np
from scipy import integrate
# fonction
F = lambda x: np.exp(-x)*np.log(x)
# intégrale
I = integrate.quad(F, 0, 1)[0]
print("intégrale :", I)
# somme, signe, factorielle, n
S, s, f, n = 0, -1, 1, 5
# somme partielle d’indice n
for k in range(1, n+1):

S += s/k/f
f *= k+1
s *= -1

print("somme partielle :", S)
# différence entre I et S
print("différence :", I - S)

95 CCP18

Préambule. Utilisons le théorème d’intégration des
séries de fonctions sur un intervalle, qui prouvera au
passage la convergence de l’intégrale.

Calcul. Voici un calcul formel que l’on justifiera
ensuite. Nommons I l’intégrale de l’énoncé.

I =
∫ +∞

0

x2 e−x

1 − e−x
dx

=
∫ +∞

0
x2 e−x

+∞∑
n=0

e−nx dx(1)

=
+∞∑
n=0

∫ +∞

0
x2 e−(n+1)x dx(2)

=
+∞∑
n=0

∫ +∞

0

t2 e−t

(n + 1)3 dt(3)

=
+∞∑
n=0

1
(n + 1)3 Γ (3)(4)

= 2
+∞∑
n=1

1
n3 .(5)

Justifications.
(4) On reconnait que∫ +∞

0
t2 e−t dt =

∫ +∞

0
t3−1 e−t dt = Γ (3).

(5) On sait que Γ (3) = 2! = 2 et on translate l’indice
dans la somme.
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(3) le changement de variable t = (n + 1)x est licite
car C 1 et bijectif de R+ dans lui-même. Et comme on
a reconnu Γ (3), qui converge, la première intégrale
converge et l’égalité est valide.
(1) On connait le développement en série entière usuel

1
1 − u

=
+∞∑
n=0

un

valable pour u ∈ ]−1, 1[, et on l’utilise pour x > 0 et
u = e−x ∈ ]0, 1[.
(2) Pour tout n ∈ N∗, fn : x 7→ x2 e−(n+1)x est conti-
nue sur R∗

+. Elle y est aussi intégrable d’après (3).
D’après (1),

∑
fn converge simplement sur R∗

+, et

sa somme f : x 7→ x2/(ex − 1) y est continue. Enfin,
d’après (3), (4) et (5),∫ +∞

0
|fn| = 2

(n + 1)3 ∼ 2
n3

où
∑

1/n3 converge, donc
∑ ∫ +∞

0 |fn| converge.
D’après le théorème invoqué en préambule, f est

intégrable sur R∗
+, et en passant I existe, et l’on peut

permuter série et intégrale, ce qui justifie (2).
Finalement,∫ +∞

0

x2

ex − 1 dx = 2
+∞∑
n=1

1
n3 .

4 4


