Corrigés des exercices de la dixieme feuille

[86] ccp

1. Pour n € N*| considérons les fonctions

(=D

1+n222

iRy =R, 22—

DEFINITION. Pour & > 0 fixé, la suite numérique
(Ifr(x))n>1 décroit vers 0, donc d’apres le théo-
reme spécial des séries alternées, la série numérique
Y n>1fn(x) converge. Donc la série de fonctions
Zn>1 fn converge simplement sur R* et Sy est dé-
finie.

CONTINUITE. Pour tout n € N*, la fonction f,, est
continue sur R* . Soient a > 0, x € [a, +oo[ et n € N*.

On a
1

| fn(2)] < 2
Or la série > 1/(n?a?) converge et ne dépend pas
de x. Alors la série de fonctions Zn>1 fn converge nor-
malement donc uniformément sur tout [a, +o00[ C RY,
donc S est continue sur R7 .

Commentaire. Le théoréme spécial des séries alternées
aurait permis de montrer directement la convergence
uniforme, mais ici, la convergence normale est aussi
directe.

2. INTEGRABILITE. On sait déja que >, -, fx
converge simplement sur R%} et que les f, et Sy
sont continues. De plus, pour tout n > 1,

1
g -
| ()] 1+ a2
ott z — 1/(1 + x?) est intégrable sur R%, donc f,
lest aussi. Mais

/+°° de {Aretan(nm)]Jroo ™
0

1+n222 n 0 ~on

donc Y, o [p« [fnl| diverge et le théoréme du cours
Z +
ne s’applique pas.

Cependant, toujours d’apres le théoreme spécial
des séries alternées,

+oo

Ot 'on voit donc que S est intégrable sur RY .

1

15(@)| = T 1322

< | fi(w)]

Commentaire. Les théorémes du cours sont trés puis-
sants, mais pas toujours nécessaires.

(87] ccp

1. Soit n > 2. L’intégrande f, de I, est continue
sur Ry . De plus, pour ¢t > 1,

)] = 21 :

1 + t2n t—too {1
Or la fonction ¢ — 1/t™ est intégrable sur [1, +oo| car
n = 2> 1, donc f, l'est aussi et I,, existe.

2. Utilisons le théoréme de convergence dominée.

o Les f, sont continues sur R;.

o Soit t € R,. La suite (™) converge vers 0sit < 1,1
sit =1et 4oo0sit > 1. Donc la suite (fy,(t)) converge
verstsit < 1et 0sit> 1. Ainsi, la suite de fonctions
(fn) converge simplement sur R, vers la fonction

t
f:tl—>{0

o La fonction f est continue par morceaux sur R,.
o Soit n > 2. Pour ¢ € [0, 1],

sit<1,
sit>1.

t—t"
|fn(t)| = W =
Pour t > 1,
th —t t" 1 1
Ol =T <@ = <@

Considérons la fonction

t  sit<1,
p:t— <1

ﬁ Sit>1,

de sorte que pour tout t > 0 et n > 2,

[fa ()] < @(D)-

La fonction ¢ est continue sur R, car elle l'est
sur Ry~ {1} et que ses limites & droite et & gauche en 1
valent 1 = ¢(1). De plus, ¢ est intégrable sur [1, +o00]
car t +— 1/t% l’est. Ainsi, 'hypothése de domination
est vérifiée.

Alors
e les f, et f sont intégrables sur R,
e la suite (I,,) converge et

+oo 1 1
mlh:/ f@&:/t&:<
n—-+oo 0 0 2

[88] cs

1. CONVERGENCE SIMPLE. Soit = € [0,5]. Si
x =0, fo(lx) = 0. Si z # 0, |cosz| < 1 donc
lim, 400 fn(z) = 0. Il s’ensuit que (f,) converge

simplement sur [0, 5] vers la fonction nulle.

CONVERGENCE UNIFORME. Pour x € [0, §] et n > 1,
fl(z) = cos" !z (—nsin? z + cos? x) donc

1
fix)=0 < z = Arctanﬁ oux = g
Alors, pour z € [0, 7],
|fn(@)| < f ArctanL < sin Arctani < =S
n X Jn \/ﬁ S \/ﬁ < \/ﬁ

donc (f,) converge uniformément sur [0, 5] vers la
fonction nulle.
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2. En posant u = cosz,

/2 1
n
/ ncos" xsinxdr = n/ udy= —— ——1
0 0 n+1 na+oo

3. On voit sans difficulté que (g,) converge simple-
ment vers la fonction nulle sur [0, 7]. Mais comme
fow/ 2 9gn 7 0, (gn) ne converge pas uniformément vers
la fonction nulle sur [0, 7].

[89] ccp
Voir ’exemple du cours.
[90} ccp

1. Oui, par concavité du sinus sur [0, 7].

2. Soit x € Ry. Pour n assez grand, x < n 3, donc

fulz) = exp(nln(l - sin%)).

En outre, quand n tend vers +oo, sin > ~ =, donc
In(1—sin %) ~ =% et nIn(1—sin ¥) ~ —z. Par conti-
nuité de Pexponentielle en —z, f,,(z) ~ e~*. Ainsi, la
suite de fonctions (f,,) converge simplement sur R

vers la fonction f:x — e™".

3. Appliquons le théoréme de convergence dominée.
Les f, sont continues sur Ry, car f,(n3) = 0; la
suite (f,,) converge simplement sur R vers f; f est
continue sur R;. Enfin, pour n € N* et ¢t > 0,

falt) = exp(nln(l — sin 3))

n
2t
< exp(nln(l — ——))
™n
2t
< exp(—n—) = e B/,
™

oft t — e 2Y/™ est continue et intégrable sur R
Alors le théoreme s’applique : les f, et f sont
intégrables sur R4 et 'on a
+oo +oo
lim fn = / f=1
n—-+o00o 0 0

CcCp

[91]

1. Sur le segment K = [0,1], z (1 — z) < 1, donc
I, < (i)" et lim7I,, = 0.
2. Appliquons le théoréme de convergence dominée
aux fonctions f, : K — K, x — 4"z™ (1 —2)™, de
sorte que 4" I, = [} fu.

o Les fonctions f,, sont continues sur K.

o Ona fn(%) =1,etsix# %, 4z (1 —z) < 1, donc
la suite numérique (f,,(z)) tend vers 0. Ainsi, la suite
de fonctions (f,,) converge simplement sur K vers la
fonction f, nulle sur K sauf en % ou elle vaut 1.

o La fonction f est continue par morceaux sur K.
o On a la domination 0 < f, < 1, ou la fonction

x +— 1 est positive, continue et intégrable sur K.

Alors, grace au théoreme susnommé,
e les f, et f sont intégrables sur K ;
° limefn = fo = 0. Ainsi, lim4™I,, = 0.

2

4

[92]

1. Nommons R le rayon de convergence cherché.
Comme ) a, converge absolument, (a,) est bor-
née, disons par M, donc |a,/n!| < M/n! Ainsi, R
est minoré par le rayon de convergence de la série
entiére Y z™/n! On reconnait le développement en
série entiere de I’exponentielle, qui a pour rayon de
convergence +o00. Donc R = +oc0.

CCINP25

2. Permutons, puis justifions :

+o0 Foo I yn
/ f(t)e_tdt:/ y ettdt
0 0 n=0
= - the tdt = G-
|
n—o " J0 , n=0
=I'(n+1)=n!

Les fonctions f, : t + a,t"e~t/n! sont toutes
intégrables sur Ry, car t" et < e"%/? en +o0. La
série de fonctions Y f,, converge simplement sur R,
et sa somme t — f(t)e~ est continue sur R. En-
fin, 0+°O|fn(t)|dt = |an|, et par hypothese, > |a,|
converge. Alors, la fonction ¢ — f(t)e™ est intégrable
sur Ry et la permutation est permise.

[93]

1. o Par opérations usuelles, pour tout n € N*, w,,
est de classe ¢! sur [0,1] et pour tout = € [0, 1],

CCINP25

o (:C)f#,lf _r
" n(1+ %) n n(ndta)
o Soit z € [0,1]. Quand n augmente,
T 1 T 1
un() = - +0(15) = =0(5)

Or 37,5, 1/n* converge comme série de Riemann
ot 2 > 1, donc la série }_, -, un(z) converge. Ainsi,
la série de fonctions Zn% u, converge simplement
sur [0, 1].
o Pour tout n € N* et tout = € [0,1],

1

)] = o 5

—— <
n+x)

Or ce majorant ne dépend pas de = et on l'a
dit, 37,5, 1/ n? converge, donc la série de fonctions

n

> n>1 Uy, converge normalement donc uniformément
sur [0, 1].
Alors
e S est bien définie et de classe ¢! sur [0, 1]
e et pour tout z € [0, 1],

“+o0

x
=y
—n(n+x)

2. D’apres le calcul précédent,
“+oo
1 1
5'(1) = ( _ f) S
(1) nz::l n+l n

ou l'on a reconnu une somme télescopique.
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[94]

Utilisons le théoréeme d’intégration des séries de
fonctions sur un intervalle, qui justifiera la conver-
gence et permettra le calcul de cette intégrale.

MP

CALCUL FORMEL. Voici un calcul formel, que 'on
justifiera ensuite.

(1) / e 'Intdt = /1 ' lntdt
0
_ (_1)71 nn
(2) —nz::o o /Ot Intdt
too 1)n+1
®) - T;) nl(n+1)2
+oo n
g -3

JUSTIFICATION. (1) Oui, grace au développement en
série entiere usuel de 'exponentielle, dont le rayon de
convergence est +oo.

(3) En intégrant par parties, pour tout n € N,

1 thrl 1 1
/ t"Intdt = { lnt] —/
0 n+1 0 0

L’intégration par parties est permises car les fonctions
manipulées sont de classe ¢! sur ]0, 1], le crochet a
un sens avec les limites usuelles car n + 1 > 0, et
la derniere intégrale n’est plus généralisée, donc elle
converge. Ainsi,

1 1
t"Intdt = —————.
/0 (n+1)2

o1
n—l—l;

(4) Oui! i

(2) Pour tout n € N, la fonction fy, : ¢ = (=1)" — Int
n!

est continue sur ]0,1], et on vient de voir qu’elle y

est intégrable. De plus, Y f,, converge simplement

sur ]0,1] et sa somme f :t — e ‘Int est bien-sir

continue sur ]0, 1]. Enfin, pour tout n € N,

/|fn— !

n!
et > 1/n! converge donc fo | fru| converge.
D’apres le théoreme annoncé, f est intégrable sur
10,1], ce qui justifie comme prévu existence de fol f,
et 'on peut permuter série et intégrale, ce qui justi-
fie (2).

VALEUR APPROCHEE. Ainsi,

1
/ e tlntdt =
0

C’est la somme d’une série alternée, redevable du cri-
tére spécial des séries alternées puisque ( —-1) décroit
vers 0. En vertu de ce théoréme, pour tout n € N,

7<
(n+1)2n

+oo

>

n=1

(="

nn!

+oo (_1)k 1
k:zn;u kk! | = (n+1)(n+ 1)

3|4

Donc ceci est un majorant de ’erreur commise en
approchant la somme compléete par la somme partielle
d’indice n. Pour avoir une erreur inférieure a 1073, il
suffit de choisir ce majorant inférieur & 1073, c’est-a-
dire (n + 1) (n + 1)! > 1000, soit n = 5. Ainsi, une
valeur approchée de I'intégrale & 1073 pres est

-1 5737
7200

Mm
A
—

nn!
n=

BonNus. Voici un peu de Python, pour le plaisir.

import numpy as np

from scipy import integrate

# fonction

F = lambda x: np.exp(-x)*np.log(x)
# intégrale

I = integrate.quad(F, 0, 1)[0]
print("intégrale ", D)
# somme, signe, factorielle,
S, s, f,n=0, -1, 1, 5

# somme partielle d’indice n

n

for k in range(1l, n+1):
S += s/k/f
f *= k+1
s x= -1

print("somme partielle :", S)
# différence entre I et S

print("différence ", I -9)

95
PREAMBULE. Utilisons le théoréme d’intégration des

séries de fonctions sur un intervalle, qui prouvera au
passage la convergence de l'intégrale.

CCP18

CALCUL. Voici un calcul formel que l'on justifiera
ensuite. Nommons [ 'intégrale de I’énoncé.

—+o00
R
0 1—e®

+o0 too
/ 22e”® Z e "*dx

0 n=0

+oo “+o0
Z/ p2e” (DT 4y
n=0 0

1‘2 e~ %

dx

ITX ptoe p2,-t
B Z / (n+1)3
+oo
n=0
+oo 1
=2y —.
D
n=1
JUSTIFICATIONS.
(4) On reconnait que

+oo +oo
/ t2e~tdt = / 37 le~tdt = I'(3).
0 0

(5) On sait que I'(3) = 2! = 2 et on translate I'indice
dans la somme.

g dt

1

mripl®
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(3) le changement de variable t = (n + 1)z est licite
car ¢! et bijectif de R, dans lui-méme. Et comme on
a reconnu I'(3), qui converge, la premiére intégrale
converge et 1’égalité est valide.

(1) On connait le développement en série entiére usuel

+oo
Y

n=0
valable pour u € |—1, 1[, et on l'utilise pour x > 0 et
u=e"e]0,1[.
2) Pour tout n € N*, f,, : & — 22e~ ("t egt conti-
( ;

nue sur R . Elle y est aussi intégrable d’apres (3).
D’apres (1), > fn converge simplement sur R, et

1

1—u

4

4

sa somme f :x — 22/(e® — 1) y est continue. Enfin,
d’apres (3), (4) et (5),

[ 2
o " (n+1)3 wd

ot Y 1/n? converge, donc f0+oo|fn| converge.
D’apres le théoréme invoqué en préambule, f est

intégrable sur R* , et en passant I existe, et 'on peut

permuter série et intégrale, ce qui justifie (2).
Finalement,

+o0 1,2
0 et — 1

00 1
de =2 —.
T=2)

n=1



