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122
Le calcul ne présente pas de difficulté théorique.

Pour tout λ ∈ R,

det(A− λI3) = (3− λ)(λ2 − 2λ + 2).

Continuons dans C. On a SpC(A) = {3, 1 + i, 1− i}
et on trouve

E3(A) = C

 1
1
1

 et E1+i(A) = C

 1− 2 i
2
i

 .

Pour le dernier, on ne refait pas les calculs. En effet,
comme A est réelle, si X ∈ E1+i(A), AX = (1 + i)X
donc en conjuguant, A X = (1 − i) X, donc
X ∈ E1−i(A). Alors

E1−i(A) = C

 1 + 2 i
2
−i

 .

123 CCP

1. Comme la trace est linéaire, f est un endomor-
phisme de E = Mn(C).

Comme Tr(A) ̸= 0, A ̸= 0, donc si M ∈ Ker f ,
Tr(M) = 0. Réciproquement, si Tr(M) = 0,
f(M) = 0. Ainsi, Ker f = Ker Tr.
2. Comme Ker f ≠ {0}, 0 ∈ Sp(f). En outre,
A ≠ 0 et f(A) = Tr(A)A, donc Tr(A) ∈ Sp(f).
C’est bien une autre valeur propre car Tr(A) ̸= 0.
Comme Ker f est un hyperplan et que A /∈ Ker f ,
E = Ker Tr ⊕ CA = E0(f)⊕ ETr(A)(f). Donc il n’y
a pas d’autre valeur propre.
Commentaire. En passant, f est diagonalisable.

124 CCP

1. Si p = idE , pour tout u ∈ E, φ(u) = u, donc
φ = idL(L(E)), Sp(φ) = {1} et E1(φ) = L(E).
2. Si p = 0L(E), pour tout u ∈ E, φ(u) = 0L(E), donc
φ = 0L(L(E)), Sp(φ) = {0} et E0(φ) = L(E).
3. Supposons désormais que p /∈ {0L(E), idE} : comme
p ◦ p = p, pour tout u ∈ L(E), on a

φ ◦ φ(u) = (u ◦ p) ◦ p = u ◦ (p ◦ p) = u ◦ p = φ(u).

Donc φ ◦ φ = φ. Ainsi, φ est un projecteur de L(E)
et Sp(φ) ⊂ {0, 1}.

Soit u ∈ L(E). On a

u ∈ E0(φ) ⇐⇒ φ(u) = 0L(E)

⇐⇒ u ◦ p = 0L(E)

⇐⇒ ∀x ∈ E, u(p(x)) = 0E

⇐⇒ ∀y ∈ Im p, u(y) = 0E

⇐⇒ ∀y ∈ Im p, y ∈ Ker u

⇐⇒ Im p ⊂ Ker u.

Ainsi,
E0(φ) = {u ∈ L(E) | Im p ⊂ Ker u}.

En outre, on sait que Im p = Ker(idE −p) donc en
notant q = idE −p, q ∈ E0(φ). Et comme p ≠ idE ,
q ≠ 0L(E), donc E0(φ) ̸= {0L(E)}. Ainsi, 0 est bien
valeur propre de φ.

De même,
u ∈ E1(φ) ⇐⇒ φ(u) = u

⇐⇒ u ◦ p = u

⇐⇒ ∀x ∈ E, u(p(x)) = u(x)
⇐⇒ ∀x ∈ E, u(x− p(x)) = 0E

⇐⇒ ∀y ∈ Im(idE −p), u(y) = 0E

⇐⇒ Im q ⊂ Ker u.

Or Im q = Ker p. Donc
E1(φ) = {u ∈ L(E) | Ker p ⊂ Ker u}.

On voit que p ∈ E1(φ), et puisque p ̸= 0L(E),
E1(φ) ̸= {0L(E)}, donc 1 est bien valeur propre de φ.

125 CCP

1. La matrice

A− I4 =


0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0


est de rang 3. Comme 3 < 4, 1 ∈ SpR(A).
2. De plus, le sous-espace propre associé est
E1(A) = Ker(A− I4) et d’après le théorème du rang,
dim(E1(A)) = 4− 3 = 1.

Les colonnes C2 et C3 de A− I4 sont égales : on
peut écrire

C2 = C3 ⇐⇒ C2 − C3 =


0
0
0
0



⇐⇒
(

C1 C2 C3 C4
)︸ ︷︷ ︸

A− I4


0
1
−1

0

 =


0
0
0
0



⇐⇒ (A− I4)


0
1
−1

0

 =


0
0
0
0


donc 

0
1
−1

0

 ∈ Ker(A− I4) = E1(A).

Comme E1(A) est une droite,

E1(A) = R


0
1
−1

0

 .
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3. Comme on a déjà une valeur propre, ne repar-
tons pas dans la démarche habituelle du polynôme
caractéristique.

Sur le même principe qu’au dessus, on voit que
rg(A) = 3, donc 0 ∈ SpR(A) et dim(E0(A)) = 1. En
outre, les deux colonnes extrêmes de A sont égales,
donc en raisonnant comme à la question précédente

E0(A) = R


1
0
0
−1

 .

Soit alors λ /∈ {0, 1} une autre valeur propre éven-
tuelle de A, et soit X ̸= 0 un vecteur propre associé :

X ∈ Eλ(A)

⇐⇒



x1 + x2 + x3 + x4 = λx1

x1 + x2 + x4 = λx2

x1 + x3 + x4 = λx3

x1 + x2 + x3 + x4 = λx4

L’idée est de discuter selon λ l’existence de solutions
non nulles à ce système. On pourrait (devrait...) uti-
liser un pivot, mais avec le paramètre λ, les calculs
seront peut-être lourds. Avisons.

X ∈ Eλ(A)

⇐⇒


∑4

i=1 xi = λx1

x1 + x4 = (λ− 1)x2

x3 − x2 = λ(x3 − x2) L3 ← L3 − L2

0 = λ(x4 − x1) L4 ← L4 − L1

Comme λ ̸= 0 et λ ̸= 1,

X ∈ Eλ(A)

⇐⇒


x1 = x4 L1 ↔ L4

x2 = x3 L2 ↔ L3

2x1 = (λ− 1)x2

2x1 + 2x2 = λx1

⇐⇒


x1 = x4, x2 = x3

2x1 = (λ− 1)x2

(λ + 1)x2 = λx1

⇐⇒


x1 = x4, x2 = x3

2x1 = (λ− 1)x2

2(λ + 1)x2 = λ(λ− 1)x2.

Si x2 = 0, tous les xi sont nuls et X = 0, ce qui n’est
pas, donc x2 ̸= 0. Alors la dernière équation devient
λ2 − 3λ− 2 = 0, dont les racines sont

λε =
3 + ε

√
13

2 où ε = ±1.

Les espaces propres correspondants sont

Eλε
(A) = R


λε − 1

2
2

λε − 1

 , ε = ±1.

Commentaire. A est symétrique réelle donc elle est
diagonalisable. Alors certaines étapes de la résolution
auraient pu être abrégées.

126 CCP

1. Par linéarité de la dérivation, φ est clairement li-
néaire. En outre, si deg(P ) ⩽ n, deg(P ′′) ⩽ n − 2
donc deg(φ(P )) ⩽ n − 2 + 2 = n. Ainsi, φ est bien
un endomorphisme de Rn[X].
2. On a φ(1) = φ(X) = 0 et pour tout k ∈ [[2, n]],

φ(Xk) = (X − 1)2 k (k − 1)Xk−2

= k (k − 1)(Xk − 2Xk−1 + Xk−2).

Ainsi, la matrice de φ dans la base canonique est tri-
angulaire supérieure, avec sur la diagonale les k(k−1),
où k ∈ [[0, n]]. Donc

Sp(φ) = {k (k − 1), k ∈ [[0, n]]}.

3. 0 ∈ Sp(φ) donc φ n’est pas injectif.

127

Polynôme caractéristique. Soit x ∈ R. On a

χA(x) = det(xI3 −A) = (−1)3 det(A− xI3)

= −

∣∣∣∣∣∣
1− x 2 2

2 1− x 2
2 2 3− x

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
−1− x 2 2

1 + x 1− x 2
0 2 3− x

∣∣∣∣∣∣C1 ← C1 − C2

= −(1 + x)

∣∣∣∣∣∣
−1 2 2

0 3− x 4
0 2 3− x

∣∣∣∣∣∣L2 ← L2 + L1

= (1 + x)
∣∣∣∣ 3− x 4

2 3− x

∣∣∣∣
= (1 + x)((3− x)2 − 8)
= (x + 1)(x− 3− 2

√
2 )(x− 3 + 2

√
2 ).

Ainsi, Sp(A) = {−1, 3 + 2
√

2, 3− 2
√

2 }. En passant,
χA est scindé à racines simples sur R, donc A est
diagonalisable.

Espaces propres. Soit X =

x
y
z

 ∈M3,1(R).

X ∈ E−1(A) ⇐⇒ (A + I3)X = 0

⇐⇒

 2 2 2
2 2 2
2 2 4

x
y
z

 =

 0
0
0


⇐⇒

{
x + y + z = 0

x + y + 2z = 0
⇐⇒ x + y = 0, z = 0.

Ainsi, E−1(A) = R

 1
−1

0

.
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X ∈ E3+2
√

2(A) ⇐⇒ (A− (3 + 2
√

2 )I3)X = 0

⇐⇒

(
−2 − 2

√
2 2 2

2 −2 − 2
√

2 2
2 2 −2

√
2

)(
x
y
z

)
=
(

0
0
0

)

⇐⇒


−(1 +

√
2 )x + y + z = 0

x− (1 +
√

2 )y + z = 0

x + y −
√

2z = 0

On voit que L1 +L2 =
√

2L3, donc on peut conserver
les lignes L2 et L3 :

X ∈ E3+2
√

2(A)

⇐⇒

{
x + y −

√
2z = 0

x− (1 +
√

2 )y + z = 0

⇐⇒

{
x + y −

√
2z = 0

− (2 +
√

2 )y + (1 +
√

2 )z = 0

⇐⇒


y = 1 +

√
2

2 +
√

2
z = 1√

2
z

x = 1√
2

z

Ainsi, E3+2
√

2(A) = R

 1
1√
2

.

Les calculs pour déterminer E3−2
√

2(A) sont les
mêmes, sauf que les termes en

√
2 sont changés en

leur opposé. Alors E3−2
√

2(A) = R

 1
1

−
√

2

.

Diagonalisation. On peut donc écrire A = P DP −1

avec D = diag(−1, 3 + 2
√

2, 3− 2
√

2) et

P =

 1 1 1
−1 1 1

0
√

2 −
√

2

 .

128 AM

On trouve que 2 est valeur propre triple de A et

E2(A) = R

 1
1
0

 .

Alors A n’est pas diagonalisable. Mais elle est trigo-
nalisable, car χA est scindé sur R.

Soit a l’endomorphisme de M3,1(R) canonique-
ment associé à A. Cherchons une base (e1, e2, e3) de
M3,1(R) dans laquelle la matrice T de a soit triangu-
laire. Sur la diagonale de cette matrice figurent les
valeurs propres de a, donc celles de A :

T =

 2 α β
0 2 γ
0 0 2

 .

On peut choisir α = γ = 1 et β = 0 :

T =

 2 1 0
0 2 1
0 0 2

 .

Commentaire. Ce résultat hors-programme n’est pas
à connaitre, et l’examinateur est censé donner l’indi-
cation lors de l’exercice. Ou alors, on mène les calculs
qui suivent avec α, β, γ quelconques, et l’on voit en-
suite que ce choix est possible.

Grâce à la première colonne de T , on voit que
a(e1) = 2e1, donc on peut choisir

e1 =

 1
1
0

 .

Grâce à la seconde colonne de T , on voit que
a(e2) = 2e2 + e1. Cherchons donc

e2 =

x
y
z


tel que Ae2 = 2e2 + e1. On résout

A

x
y
z

 = 2

x
y
z

+

 1
1
0


et l’on choisit une solution

e2 = 1
2

−1
0
1

 .

Avec la dernière colonne de T , cherchons e3 tel que
a(e3) = 2e3 + e2 : on résout

A

x
y
z

 = 2

x
y
z

+ 1
2

−1
0
1


et l’on choisit une solution

e3 = 1
2

 1
0
0

 .

Enfin, A = P TP −1 avec

P = 1
2

 2 −1 1
2 0 0
0 1 0

 et T =

 2 1 0
0 2 1
0 0 2

 .

129 MT

Préambule. La matrice A est triangulaire donc ses
valeurs propres se lisent sur sa diagonale. Si a = g,
a est valeur propre quadruple, et sinon, a et g sont
valeurs propres doubles.

Cas où a = g. La matrice A est diagonalisable si et
seulement si elle est semblable à aI4, si et seulement
si elle est égale à a I4, si et seulement si les autres
coefficients de A sont tous nuls. En effet, seule I4 est
semblable à I4.
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Cas où a ̸= g. Voici deux méthodes, entre autres.
Rang. La matrice A est diagonalisable si et seule-

ment si ses espaces propres Ea(A) et Eg(A) sont
des plans, autrement dit, si et seulement si les ma-
trices A − a I4 et A − g I4 sont de rang 2. On voit
que rg(A − a I4) = 2 si et seulement si b = 0 et
rg(A− gI4) = 2 si et seulement si h = 0. Ainsi, A est
diagonalisable si et seulement si b = h = 0.

Polynômes. Comme SpR(A) = {a, g}, A est diago-
nalisable si et seulement si le polynôme∏

λ∈SpR(A)(X − λ) = (X − a)(X − g)

est annulateur de A. Et l’on voit que la matrice

(A−aI4)(A−g I4)=


0 b(a−g) be bf +ch
0 0 0 eh
0 0 0 h(g−a)
0 0 0 0


est nulle si et seulement si b = h = 0.

130 IIE

1. Notons E = Mn(R). On voit que Φ2 = idE , donc
Φ est une symétrie. Ses sous-espaces propres sont
Ker(Φ − idE) = Sn(R), l’ensemble des matrices sy-
métriques, et Ker(Φ + idE) = An(R), l’ensemble
des matrices antisymétriques. De plus, on sait que
E = Sn(R) ⊕ An(R). Ainsi, χΦ est scindé sur R,
Sp(Φ) = {−1, 1}, et on a les multiplicités

m(1) = dim Sn(R) = 1
2 n(n + 1),

m(−1) = dim An(R) = 1
2 n(n− 1).

Enfin, puisque χΦ est scindé sur R,

det(Φ) =
∏

λ∈Sp(Φ) λm(λ) = (−1)n(n−1)/2,

Tr(Φ) =
∑

λ∈Sp(Φ) λm(λ) = n.

2. Oui, c’est une symétrie.

131 Navale

Nommons (E) l’équation et posons J =
(

1 1
1 1

)
.

1. Commençons par diagonaliser J : c’est possible car
J est symétrique réelle. En nommant C1 et C2 ses
colonnes, on voit que C1 = C2, autrement dit

C1 − C2 =
(

0
0

)
,

ou encore (
C1 C2

)( 1
−1

)
=
(

0
0

)
,

c’est-à-dire

J

(
1
−1

)
= 0

(
1
−1

)
.

Où l’on voit que 0 ∈ SpR(J) et(
1
−1

)
∈ E0(J).

De même, on voit que

C1 + C2 =
(

2
2

)
,

ce que l’on interprète directement en

J

(
1
1

)
= 2

(
1
1

)
.

Donc 2 ∈ SpR(J) et(
1
1

)
∈ E2(J).

Il s’ensuit que SpR(J) = {0, 2} et

E0(J) = R
(

1
−1

)
, E2(J) = R

(
1
1

)
.

Finalement, J = P DP −1 avec D = diag(0, 2) et

P =
(

1 1
−1 1

)
.

2. Soit M une solution de (E). Comme J = M2 + M ,
J est un polynôme en M , donc J et M commutent.
Cela entraine que les sous-espaces propres de J sont
stables par M . Comme ce sont des droites, dire
qu’elles sont stables par M signifie que ce sont des
droites propres pour M . Autrement dit, la base de
vecteurs propres de J trouvée plus haut est aussi
une base de vecteurs propres de M . Alors M est dia-
gonalisable, et dans la même base que J : il existe
donc une matrice diagonale ∆ = diag(a, b) telle que
M = P ∆P −1.

On a M2 + M = J , d’où ∆2 + ∆ = D, ou encore
a2 + a = 0 et b2 + b = 2, c’est-à-dire a ∈ {−1, 0}
et b ∈ {−2, 1}. Donc, quatre matrices conviennent
possiblement :

P diag(−1,−2)P −1 = −1
2

(
3 1
1 3

)
,

P diag(−1, 1)P −1 =
(

0 1
1 0

)
,

P diag(0,−2)P −1 = −
(

1 1
1 1

)
,

P diag(0, 1)P −1 = 1
2

(
1 1
1 1

)
.

Et l’on vérifie sans peine qu’elles conviennent ef-
fectivement toutes les quatre.
Commentaire. On a en fait raisonné par analyse-
synthèse : si M est solution de (E), alors c’est l’une
des quatre ci-dessus ; et les quatre conviennent.

132 CCP

On a A3 − 3 A2 + 2 A = A (A − I3) (A − 2 I3).
Comme A admet un polynôme annulateur scindé
à racines simples, A est diagonalisable. De plus,
SpR(A) ⊂ {0, 1, 2}. Mais A n’est pas inversible donc
0 ∈ SpR(A). Enfin, Tr(A) = 3 est la somme des
valeurs propres de A, qui sont donc forcément 0, 1
et 2. Ainsi, les matrices cherchées sont exactement
les matrices semblables à diag(0, 1, 2).

4 6



Corrigés des exercices de la quatorzième feuille

133 CS

1. Dans l’action de φ sur M , les coefficients de M
ne bougent pas, sauf les quatre coins qui tournent
d’un quart de tour dans le sens des aiguilles d’une
montre. Alors φ4 = idM4(R). Le polynôme X4 − 1 est
donc annulateur de φ. Mais comme il n’est pas scindé
sur R, on ne peut pas encore conclure.

On sait seulement que Sp(φ) ⊂ {−1, 1}.
Soit M ∈ M4(R) telle que φ(M) = M . Alors les

coefficients de M sont arbitraires, sauf les coins qui vé-
rifient a = d = p = m. Ainsi, M est déterminée par un
coin et ses autres coefficients, donc dim E1(φ) = 13.

Soit M ∈M4(R) telle que φ(M) = −M . Alors les
coefficients de M autres que ses coins sont nuls, et
les coins vérifient a = −d = p = −m. Ainsi, M est
déterminée par un coin donc dim E−1(φ) = 1.

Mais la somme de ces dimensions est
13 + 1 = 14 < 16, donc φ n’est pas diagonalisable.
2. À proprement parler, on ne peut pas se demander
si φ est diagonalisable sur C, car c’est un endomor-
phisme de l’espace M4(R) qui est réel.

Mais l’on peut considérer l’endomorphisme φ̃ de
M4(C) dont l’action est la même que celle de φ dans
M4(R). On a donc toujours φ̃ 4 = idM4(C). Le poly-
nôme annulateur X4 − 1 est scindé à racines simples
sur C, donc φ̃ est diagonalisable.

134 MP

On a Un+1 = AUn, on posant

Un =

 an

bn

cn

 et A = 1
4

 0 1 3
3 0 1
1 3 0

 .

Par une récurrence immédiate, Un = An U0. Il reste
à calculer An. Pour cela, diagonalisons A.

Les valeurs propres de A sont 1, λ = − 1
2 + i

√
3

4
et µ = λ. Donc, A est diagonalisable sur C : il existe
une matrice P ∈ GLn(C) telle que A = P DP −1 avec
D = diag(1, λ, µ). Alors An = P Dn P −1. Ainsi,

Un = P DnP −1U0.

Sans calculer P −1, posons

V0 = P −1 U0 =

α
β
γ

 ∈M3,1(C).

Alors

Un = P Dn V0 = P

 α
β λn

γ µn

 .

Nommons V1, Vλ et Vµ les colonnes de P , qui re-
présentent des vecteurs propres de A respectivement
associés à 1, λ et µ. On voit donc que

Un = αV1 + β λn Vλ + γ µn Vµ.

Autrement dit, les trois suites (an), (bn) et (cn) sont
combinaisons linéaires des suites géométriques (1),
(λn) et (µn).

Comme |λ| =
√

7
4 < 1, lim λn = 0 ; de même,

lim µn = 0. Alors les suites (an), (bn) et (cn) ont des
limites ℓa, ℓb et ℓc. Et en passant à la limite sur les
coordonnées de la relation précédente, on peut même
écrire  ℓa

ℓb

ℓc

 = αV1.

Le calcul explicite — et fastidieux — de P est donc
inutile : il suffit de déterminer sa première colonne,
autrement dit l’espace propre E1(A). En nommant
C1, C2, C3 les colonnes de A, on voit que

C1 + C2 + C3 =

 1
1
1

 ,

ce que l’on interprète en

(
C1 C2 C3

) 1
1
1

 =

 1
1
1

 ,

ou encore

A

 1
1
1

 =

 1
1
1

 .

Donc

E1(A) = C

 1
1
1

 ,

et l’on peut choisir

V1 =

 1
1
1

 .

Cela entraine que ℓa = ℓb = ℓc. Nommons ℓ cette
valeur commune.

Constatons en sommant les trois suites que pour
tout n,

an+1 + bn+1 + cn+1 = an + bn + cn,

et donc
an + bn + cn = a + b + c,

et en passant à la limite,
3ℓ = a + b + c.

En conclusion, les trois suites convergent vers
ℓ = 1

3 (a + b + c).
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Ce système différentiel s’écrit Y ′ = AY où

Y =

x
y
z

 et A =

 7 −12 6
10 −19 10
12 −24 13

 .

On diagonalise A sans difficulté : A = P DP −1 avec
D = diag(−1, 1, 1) et

P =

 3 2 −1
5 1 0
6 0 1

 .

Alors
Y ′ = AY ⇐⇒ Y ′ = P DP −1 Y ⇐⇒ Z ′ = DZ
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Corrigés des exercices de la quatorzième feuille

où l’on a posé Z = P −1 Y . En notant

Z =

 z1
z2
z3

 ,

on résout :

Z ′ = DZ ⇐⇒


z′

1 = −z1

z′
2 = z2

z′
3 = z3

⇐⇒ ∃(α, β, γ) ∈ R3, ∀t ∈ R,
z1(t) = αe−t

z2(t) = β et

z3(t) = γ et.

En notant V1, V2 et V3 les colonnes de P , puisque

Y = P Z = z1 V1 + z2 V2 + z3 V3,

l’ensemble des solutions sur R du système est{
t 7→ αe−t V1 + β et V2 + γ et V3, (α, β, γ) ∈ R3

}
,

autrement dit

{
t 7→ αe−t

 3
5
6

+ β et

 2
1
0

+ γ et

−1
0
1

,

(α, β, γ) ∈ R3
}

.
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