Corrigés des exercices de la quatorzieme feuille
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Le calcul ne présente pas de difficulté théorique.
Pour tout A € R,

det(A—AI3) = (3—XA)(\> =2\ +2).

Continuons dans C. On a Spp(A4) = {3,1+14,1 — i}
et on trouve

1 1-24
Eg(A) =C 1 et E1+i(A) =C 2
1 ?

Pour le dernier, on ne refait pas les calculs. En effet,
comme A est réelle, si X € F14,;(A4), AX=(1+i)X
donc en conjuguant, AX = (1 — i)X, donc
X e El—z(A) Alors

142i
B (A)=c| 2

—1

123 CCP

1. Comme la trace est linéaire, f est un endomor-
phisme de E = M, (C).

Comme Tr(A) # 0, A # 0, donc si M € Ker f,

Tr(M) = 0. Réciproquement, si Tr(M) = 0,
f(M) = 0. Ainsi, Ker f = Ker Tr.
2. Comme Kerf # {0}, 0 € Sp(f). En outre,
A # 0et f(A) = Tr(A)A, donc Tr(A4) € Sp(f).
C’est bien une autre valeur propre car Tr(A) # 0.
Comme Ker f est un hyperplan et que A ¢ Ker f,
E =KerTr ® CA = Eo(f) ® Erya)(f). Donc il n’y
a pas d’autre valeur propre.

Commentaire. En passant, f est diagonalisable.

124 CCP

1.Si p = idg, pour tout u € E, ¢(u) = u, donc
¢ =idg(e(m)), Sp(p) = {1} et E1(p) = £(E).
2. Si p = 0g(p), pour tout u € E, p(u) = 0g(g), donc
¢ = 0g(e(p)), Sp(p) = {0} et Eo(p) = L£(E).
3. Supposons désormais que p ¢ {0¢(gy,idg} : comme
pop=p, pour tout u € £(FE), on a
pop(u)=(uop)op=uo(pop)=uop=p(u).
Donc ¢ o p = ¢. Ainsi, ¢ est un projecteur de £(F)
et Sp(y) C {0,1}.
Soit u € £(F). On a

u € Eo(p) <= ¢(u) = 0¢(p)
uop=0gm
Ve € E, u(p(z)) =0g
Yy € Imp, u(y) =0g
Vy € Imp, y € Keru

rreey

Imp C Keru.

Ainsi,
Eo(¢) ={uc £(F) |Imp C Keru}.
En outre, on sait que Imp = Ker(idg —p) donc en
notant ¢ = idg —p, ¢ € Eo(p). Et comme p # idg,
q # O¢(py, donc Eo(p) # {0¢(g)}. Ainsi, 0 est bien
valeur propre de .
De méme,

u€ Ei(p) <= ou)=u
<< uop=u
<~ Vz e E, u(p(x)) =u(x)
<~ Vz e E, ulz—px)) =0g
<= Yy € Im(idg —p), u(y) =0g
<= Imgq C Keru.

Or Im g = Ker p. Donc

E1(p) ={u € £(E) | Kerp C Keru}.
On voit que p € FEi(yp), et puisque p # Og(p),
E1(p) # {0¢(g)}, donc 1 est bien valeur propre de ¢.
125 CCP

1. La matrice

== O

1
PR RN

= o o
O~ = =

1 1
est de rang 3. Comme 3 < 4, 1 € Spg(A).
2. De plus, le sous-espace propre associé est
Eq(A) =Ker(A — 1) et d’apreés le théoréme du rang,
dim(E;(A) =4—-3=1.
Les colonnes Cs et C3 de A — I sont égales : on
peut écrire

0
0
CQZC3<:>CQ—03: 0
0
0
1 0
<— (Cl Csy 03 C4) . = 0
A-1, 0 0
0 0
1 0
—= (A-1) =10
0 0
donc
0
U eKer(A - 1) = By(4).
0
Comme FE;(A) est une droite,
0
1
E,(A)=R 1
0
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3. Comme on a déja une valeur propre, ne repar-
tons pas dans la démarche habituelle du polynéme
caractéristique.

Sur le méme principe qu’au dessus, on voit que
rg(A) = 3, donc 0 € Spg(A) et dim(Eyp(A)) = 1. En
outre, les deux colonnes extrémes de A sont égales,
donc en raisonnant comme a la question précédente

1

Eo(4)=R|

-1

Soit alors A ¢ {0,1} une autre valeur propre éven-
tuelle de A, et soit X # 0 un vecteur propre associé :
X € Ex\(4)
T1+ To 4+ X3+ 24 = A2
T + T2 + x4 =19
T + 3+ x4 =MA23
1+ 20+ 23+ Ts= A2y

L’idée est de discuter selon A I'existence de solutions
non nulles & ce systéme. On pourrait (devrait...) uti-
liser un pivot, mais avec le parametre A, les calculs
seront peut-étre lourds. Avisons.

X € Ex\(A)
Z?:lxi:)\ml
PN x1+xs=A—1)a9
x3— 29 = A(wg —x2) L3+ L3— Lo
O0=XAag—21) Ly« Lyi—1IL4
Comme A # 0O et A\ # 1,
X € Ex\(4)
T1 = X4 Ly Ly
To = I3 Lo < L3
<~
221 = (A—1)xy
221+ 219 = A1y
T1 = T4, To =13
= 23 =(A—1)zs
A+ 1)z =Am
T1 = T4, To=1I3
= {251 =\N—1)x,

2+ Day = AN — 1) 2s.

Si o = 0, tous les x; sont nuls et X = 0, ce qui n’est
pas, donc z9 # 0. Alors la derniére équation devient
A2 —3)X—2=0, dont les racines sont

34+ £4/13
A = % ol e = +1.

Les espaces propres correspondants sont
Ae—1
, € ==1.

2

6

Commentaire. A est symétrique réelle donc elle est
diagonalisable. Alors certaines étapes de la résolution
auraient pu étre abrégées.

CcCP
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1. Par linéarité de la dérivation, ¢ est clairement li-
néaire. En outre, si deg(P) < n, deg(P") < n—2
donc deg(¢o(P)) < n— 2+ 2 = n. Ainsi, ¢ est bien
un endomorphisme de R,,[X].

2. On a p(1) = ¢(X) = 0 et pour tout k € [2,n],
o(XF) = (X —1)%k(k—1) X2
=k(k—1)(X* —2x"1 4 Xk2),

Ainsi, la matrice de ¢ dans la base canonique est tri-
angulaire supérieure, avec sur la diagonale les k(k—1),
ou k € [0,n]. Donc

Sp(p) ={k(k—1), k€ [0,n]}.
3. 0 € Sp(ip) donc ¢ n’est pas injectif.

127

POLYNOME CARACTERISTIQUE. Soit z € R. On a
xa(z) =det(x I3 — A) = (—1)3det(A — z I3)

1—=z 2 2
=—| 2 11—z 2
2 2 3—x
—1—-z 2 2
=—| 14z 1—=x 2 |C1+C1—Cy
0 2 3—x
-1 2 2
0 2 3—x
3—x 4
=(1+=x) 9 3_ 4

=(1+z)(3—2)*-8)
=(z+1)(z—3-2V2)(z—3+2V2).
Ainsi, Sp(4) = {~1,3+2+/2,3 — 2+/2}. En passant,

XA est scindé a racines simples sur R, donc A est
diagonalisable.

xT
ESPACES PROPRES. Soit X = | y | € M3 1(R).
z
XeE (A < (A+13)X =0
2 2 2 z 0
— |2 2 2 yl=10
2 2 4 z 0
z+y+ z=0
=
z+y+22=0
— z+y=0, 2=0.
1
Ainsi, E_1(A) =R | —1
0
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X € By, 5(4) <= (A (3+2\f

—2-22 2
<— (

— )() 0

—(1+V2)z+ y+ =0
z—(1+V2)y+ =0
—22=0

V2 L3, donc on peut conserver

2
_Q\f

T+

On voit que L1 + Ly =
les lignes Lo et Lj :

X € Eyypa(A)
T+
—

{a:+

—

- (2+v2)
1+xf
2+f

.13:723

V2

—V2z2=0

r—(1+V2)y+ 2=0

y— V22=0

y+(1++v2)z=0
1

EZ

1
1
V2

Les calculs pour déterminer E;_, 5(A) sont les

Ainsi, By, 5(A) =R

mémes, sauf que les termes en /2 sont changés en
1
1

V2
DIAGONALISATION. On peut donc écrire A = PDP~!
avec D = diag(—1,3 + 22,3 — 2\/5) et

leur opposé. Alors E;_, 5(A) =R

1 1 1
P=|-1 1 1
0 V2 -3
128 AM
On trouve que 2 est valeur propre triple de A et

1
Ex(A)=R [ 1
0

Alors A n’est pas diagonalisable. Mais elle est trigo-
nalisable, car y 4 est scindé sur R.

Soit a ’endomorphisme de 93 1(R) canonique-
ment associé & A. Cherchons une base (e, e, €3) de
Ms 1(R) dans laquelle la matrice T' de @ soit triangu-
laire. Sur la diagonale de cette matrice figurent les
valeurs propres de a, donc celles de A :

2 a B
T=10 2 «~
0 0 2
On peut choisira=y=1et 8 =
2 1 0
T=10 2 1
0 0 2

3|6

Commentaire. Ce résultat hors-programme n’est pas
a connaitre, et ’examinateur est censé donner ’indi-
cation lors de I’exercice. Ou alors, on meéne les calculs
qui suivent avec «, 3,7 quelconques, et ’on voit en-
suite que ce choix est possible.

Gréce a la premiere colonne de T, on voit que
a(e1) = 2e1, donc on peut choisir

Gréace a la seconde colonne de T, on voit que
a(ez) = 2e5 + e1. Cherchons donc

T

Y
z

€9 =

tel que Aes = 2e5 + e1. On résout

T T 1
Aly =2y | +]|1
z z 0
et ’on choisit une solution
1 -1
€y = 5 0
1

Avec la derniére colonne de T', cherchons ej3 tel que

a(es) = 2e3 + e : on résout
T x 1 -1
Aly | =21y | += 0
2
z z 1
et ’on choisit une solution
1 1
€3 = 5 0
0
Enfin, A= PTP~! avec
1 2 -1 1 2 1 0
P:§ 2 0 0O)JeteT=|0 2 1
0 1 0 0 0 2
129 MT

PREAMBULE. La matrice A est triangulaire donc ses
valeurs propres se lisent sur sa diagonale. Si a = g,
a est valeur propre quadruple, et sinon, a et g sont
valeurs propres doubles.

CAs 0U a = g. La matrice A est diagonalisable si et
seulement si elle est semblable a a Iy, si et seulement
si elle est égale a aly, si et seulement si les autres
coefficients de A sont tous nuls. En effet, seule I est
semblable & I,.
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CAS OU a # g. Voici deux méthodes, entre autres.

Rang. La matrice A est diagonalisable si et seule-
ment si ses espaces propres Eq(A) et Eg(A) sont
des plans, autrement dit, si et seulement si les ma-
trices A —aly et A — gl sont de rang 2. On voit
que rg(A —aly) = 2 si et seulement si b = 0 et
rg(A —gly) = 2 si et seulement si h = 0. Ainsi, A est
diagonalisable si et seulement si b = h = 0.

Polynomes. Comme Spg(A) = {a, g}, A est diago-
nalisable si et seulement si le polynéme

H,\espR(A)(X AN =(X-a)(X—9)

est annulateur de A. Et 'on voit que la matrice

0 bla—g) be bf+ch
0 0 0 eh
0 0 0 h(g—a)
0 0 0 0

(A—al4) (A—gl4):

est nulle si et seulement si b = h = 0.

130 1IE

1. Notons E = 9, (R). On voit que $? = idg, donc
@ est une symétrie. Ses sous-espaces propres sont
Ker(®? — idg) = 7, (R), ensemble des matrices sy-
métriques, et Ker(® + idg) = #,(R), 'ensemble
des matrices antisymétriques. De plus, on sait que
E = 7,(R) & #,(R). Ainsi, x¢ est scindé sur R,
Sp(®) = {—1,1}, et on a les multiplicités

m(1) = dim 7, (R) = 3n(n+1),
m(—1) = dim #,(R) = i n(n — 1).
Enfin, puisque xg¢ est scindé sur R,
det(P) = HAGSP@) A = (—1)n(n=1)/2,

Te(®) = X yesp(@) Am(A) =n.

2. Oui, c’est une symétrie.
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Navale
1 1
1 1)

1. Commencons par diagonaliser J : c’est possible car
J est symétrique réelle. En nommant C; et Cy ses
colonnes, on voit que C7 = Csy, autrement dit

e (t)
@ o)
(D)=

Ot l'on voit que 0 € Spg(J) et

(1) € Eol(J).

Nommons (F) I’équation et posons J = (

ou encore

c’est-a-dire

)

4

6

De méme, on voit que

Ci+Cy = <§),

ce que l'on interprete directement en

/(1)=2(1)

Donc 2 € Spr(J) et

(}) € Ba(J).

11 s’ensuit que Spr(J) = {0,2} et

EO(J):R(D, EQ(J):R(i).

Finalement, J = P D P! avec D = diag(0,2) et

(1),

2. Soit M une solution de (E). Comme J = M?+ M,
J est un polynoéme en M, donc J et M commutent.
Cela entraine que les sous-espaces propres de .J sont
stables par M. Comme ce sont des droites, dire
qu’elles sont stables par M signifie que ce sont des
droites propres pour M. Autrement dit, la base de
vecteurs propres de J trouvée plus haut est aussi
une base de vecteurs propres de M. Alors M est dia-
gonalisable, et dans la méme base que J : il existe
donc une matrice diagonale A = diag(a, b) telle que
M=PAP !

Ona M?+ M = J, dou A?> + A = D, ou encore
a’>+a=0etb?+b=2 cestda-dire a € {-1,0}
et b € {—2,1}. Donc, quatre matrices conviennent

1 3

possiblement :
1
Pdiag(—1,-2)P~! = ~3 ( > ,
0 1
1 0)°
(11
1 1)
1/1 1
2\1 1/
Et l'on vérifie sans peine qu’elles conviennent ef-
fectivement toutes les quatre.

3 1

Pdiag(—1,1)P~*

P diag(0, —2) P~*

P diag(0,1) P~*
Commentaire. On a en fait raisonné par analyse-

syntheése : si M est solution de (E), alors c’est I'une
des quatre ci-dessus; et les quatre conviennent.

132 ccp

Ona A3 —3A2+2A4 = A(A-1)(A-21).
Comme A admet un polynéme annulateur scindé
a racines simples, A est diagonalisable. De plus,
Spr(4) C {0,1,2}. Mais A n’est pas inversible donc
0 € Spr(A4). Enfin, Tr(4A) = 3 est la somme des
valeurs propres de A, qui sont donc forcément 0, 1
et 2. Ainsi, les matrices cherchées sont exactement
les matrices semblables & diag(0, 1, 2).
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133 cs

1. Dans l’action de ¢ sur M, les coefficients de M
ne bougent pas, sauf les quatre coins qui tournent
d’un quart de tour dans le sens des aiguilles d’une
montre. Alors ¢* = idgy, (r). Le polynéme X* — 1 est
donc annulateur de . Mais comme il n’est pas scindé
sur R, on ne peut pas encore conclure.

On sait seulement que Sp(y¢) C {-1,1}.

Soit M € My (R) telle que p(M) = M. Alors les
coefficients de M sont arbitraires, sauf les coins qui vé-
rifient a = d = p = m. Ainsi, M est déterminée par un
coin et ses autres coefficients, donc dim F4 (¢) = 13.

Soit M € M4 (R) telle que (M) = —M. Alors les
coefficients de M autres que ses coins sont nuls, et

les coins vérifient a = —d = p = —m. Ainsi, M est
déterminée par un coin donc dim E_;(p) = 1.
Mais la somme de ces dimensions est

13+ 1 =14 < 16, donc ¢ n’est pas diagonalisable.

2. A proprement parler, on ne peut pas se demander
si p est diagonalisable sur C, car c¢’est un endomor-
phisme de lespace My (R) qui est réel.

Mais I’on peut considérer ’endomorphisme @ de
M4 (C) dont I'action est la méme que celle de ¢ dans
M4 (R). On a donc toujours p* = idgy, (c)- Le poly-
néme annulateur X4 — 1 est scindé & racines simples
sur C, donc ¢ est diagonalisable.

134
On a Up41 = AU, on posant

1 01 3
1 3 0

Par une récurrence immédiate, U,, = A™ Uy. 1l reste
a calculer A™. Pour cela, diagonalisons A.
Les valeurs propres de A sont 1, A = f% + 1 @

et u = . Donc, A est diagonalisable sur C : il existe
une matrice P € GL,,(C) telle que A = PD P~ avec
D = diag(1, \, ). Alors A = PD" P~L. Ainsi,

U, =PD"P~U,.
Sans calculer P~!, posons

(67

B
~

Vo :P_lUO = 69)?3,1((C).

Alors

@
U,=PD"Vy=P | B\
yH

Nommons Vi, Vi et V, les colonnes de P, qui re-

présentent des vecteurs propres de A respectivement
associés a 1, A et u. On voit donc que

U,=aV; +,B/\HV)\+’)/MnVH.

Autrement dit, les trois suites (ay), (by) et (¢,) sont
combinaisons linéaires des suites géométriques (1),

(A") et (™).

5

6

V7

Comme |\ = %5 < 1, im A" = 0; de méme,
lim p™ = 0. Alors les suites (ay), (bn) et (c,) ont des
limites £, {p et £.. Et en passant a la limite sur les
coordonnées de la relation précédente, on peut méme
écrire
lo
by
Le
Le calcul explicite — et fastidieux — de P est donc
inutile : il suffit de déterminer sa premiere colonne,
autrement dit ’espace propre Ej(A). En nommant
C1, Cy, C3 les colonnes de A, on voit que

= CYVl.

1
Ci+Cy+C5= 1],
1
ce que l'on interprete en
1 1
(Cy Co Cs)|1|=(1],
1 1
ou encore
1 1
All1|=11].
1 1
Donc
1
El (A) =C 1 )
)
et I'on peut choisir
1
Vi=11
1

Cela entraine que ¢, = {;, = {.. Nommons /¢ cette
valeur commune.

Constatons en sommant les trois suites que pour
tout n,

Ap+41 + bn+1 + Cn41 = Ap + bn + Cn,
et donc
Gn+byp+cpn=a+b+c,
et en passant a la limite,
3l=a+b+c

En conclusion, les trois suites convergent vers

(=1(a+b+c).

135 AM
Ce systeme différentiel s’écrit Y/ = AY ou
T 7T —12 6
Y=|y]| etA=1|10 =19 10
z 12 —-24 13

On diagonalise A sans difficulté : A = PD P~ avec
D = diag(—1,1,1) et

3 2 -1
P=|5 1 0
6 0 1

Alors
Y =AY <= Y' =PDP 'Y< Z'=DZ
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ot 'on a posé Z = P~1Y. En notant

21
A

I
N
)

on résout :

L
B
®
=
Mm
=
. w
<
m
I

6

6

En notant Vi, V5 et V3 les colonnes de P, puisque
Y=PZ=xV1+2Ve+23V3,
I’ensemble des solutions sur R du systéme est
{t = ae Vi 4+ Bet Vo + el Vi, (a, B,7) € R3}7

autrement dit

3 2 -1
{tl—>aeft 5 +8e | 1] 4+7¢€ 0],
6 0 1
(a.8,7) € B*}.



