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122
Le calcul ne présente pas de difficulté théorique.

Pour tout λ ∈ R,

det(A− λI3) = (3− λ)(λ2 − 2λ + 2).

Continuons dans C. On a SpC(A) = {3, 1 + i, 1− i}
et on trouve

E3(A) = C

 1
1
1

 et E1+i(A) = C

 1− 2 i
2
i

 .

Pour le dernier, on ne refait pas les calculs. En effet,
comme A est réelle, si X ∈ E1+i(A), AX = (1 + i)X
donc en conjuguant, A X = (1 − i) X, donc
X ∈ E1−i(A). Alors

E1−i(A) = C

 1 + 2 i
2
−i

 .

123 CCP

1. Comme la trace est linéaire, f est un endomor-
phisme de E = Mn(C).

Comme Tr(A) ̸= 0, A ̸= 0, donc si M ∈ Ker f ,
Tr(M) = 0. Réciproquement, si Tr(M) = 0,
f(M) = 0. Ainsi, Ker f = Ker Tr.
2. Comme Ker f ≠ {0}, 0 ∈ Sp(f). En outre,
A ≠ 0 et f(A) = Tr(A)A, donc Tr(A) ∈ Sp(f).
C’est bien une autre valeur propre car Tr(A) ̸= 0.
Comme Ker f est un hyperplan et que A /∈ Ker f ,
E = Ker Tr ⊕ CA = E0(f)⊕ ETr(A)(f). Donc il n’y
a pas d’autre valeur propre.
Commentaire. En passant, f est diagonalisable.

124 CCP

1. Si p = idE , pour tout u ∈ E, φ(u) = u, donc
φ = idL(L(E)), Sp(φ) = {1} et E1(φ) = L(E).
2. Si p = 0L(E), pour tout u ∈ E, φ(u) = 0L(E), donc
φ = 0L(L(E)), Sp(φ) = {0} et E0(φ) = L(E).
3. Supposons désormais que p /∈ {0L(E), idE} : comme
p ◦ p = p, pour tout u ∈ L(E), on a

φ ◦ φ(u) = (u ◦ p) ◦ p = u ◦ (p ◦ p) = u ◦ p = φ(u).

Donc φ ◦ φ = φ. Ainsi, φ est un projecteur de L(E)
et Sp(φ) ⊂ {0, 1}.

Soit u ∈ L(E). On a

u ∈ E0(φ) ⇐⇒ φ(u) = 0L(E)

⇐⇒ u ◦ p = 0L(E)

⇐⇒ ∀x ∈ E, u(p(x)) = 0E

⇐⇒ ∀y ∈ Im p, u(y) = 0E

⇐⇒ ∀y ∈ Im p, y ∈ Ker u

⇐⇒ Im p ⊂ Ker u.

Ainsi,
E0(φ) = {u ∈ L(E) | Im p ⊂ Ker u}.

En outre, on sait que Im p = Ker(idE −p) donc en
notant q = idE −p, q ∈ E0(φ). Et comme p ≠ idE ,
q ≠ 0L(E), donc E0(φ) ̸= {0L(E)}. Ainsi, 0 est bien
valeur propre de φ.

De même,
u ∈ E1(φ) ⇐⇒ φ(u) = u

⇐⇒ u ◦ p = u

⇐⇒ ∀x ∈ E, u(p(x)) = u(x)
⇐⇒ ∀x ∈ E, u(x− p(x)) = 0E

⇐⇒ ∀y ∈ Im(idE −p), u(y) = 0E

⇐⇒ Im q ⊂ Ker u.

Or Im q = Ker p. Donc
E1(φ) = {u ∈ L(E) | Ker p ⊂ Ker u}.

On voit que p ∈ E1(φ), et puisque p ̸= 0L(E),
E1(φ) ̸= {0L(E)}, donc 1 est bien valeur propre de φ.

125 CCP

1. La matrice

A− I4 =


0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0


est de rang 3. Comme 3 < 4, 1 ∈ SpR(A).
2. De plus, le sous-espace propre associé est
E1(A) = Ker(A− I4) et d’après le théorème du rang,
dim(E1(A)) = 4− 3 = 1.

Les colonnes C2 et C3 de A− I4 sont égales : on
peut écrire

C2 = C3 ⇐⇒ C2 − C3 =


0
0
0
0



⇐⇒
(

C1 C2 C3 C4
)︸ ︷︷ ︸

A− I4


0
1
−1

0

 =


0
0
0
0



⇐⇒ (A− I4)


0
1
−1

0

 =


0
0
0
0


donc 

0
1
−1

0

 ∈ Ker(A− I4) = E1(A).

Comme E1(A) est une droite,

E1(A) = R


0
1
−1

0

 .
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3. Comme on a déjà une valeur propre, ne repar-
tons pas dans la démarche habituelle du polynôme
caractéristique.

Sur le même principe qu’au dessus, on voit que
rg(A) = 3, donc 0 ∈ SpR(A) et dim(E0(A)) = 1. En
outre, les deux colonnes extrêmes de A sont égales,
donc en raisonnant comme à la question précédente

E0(A) = R


1
0
0
−1

 .

Soit alors λ /∈ {0, 1} une autre valeur propre éven-
tuelle de A, et soit X ̸= 0 un vecteur propre associé :

X ∈ Eλ(A)

⇐⇒



x1 + x2 + x3 + x4 = λx1

x1 + x2 + x4 = λx2

x1 + x3 + x4 = λx3

x1 + x2 + x3 + x4 = λx4

L’idée est de discuter selon λ l’existence de solutions
non nulles à ce système. On pourrait (devrait...) uti-
liser un pivot, mais avec le paramètre λ, les calculs
seront peut-être lourds. Avisons.

X ∈ Eλ(A)

⇐⇒


∑4

i=1 xi = λx1

x1 + x4 = (λ− 1)x2

x3 − x2 = λ(x3 − x2) L3 ← L3 − L2

0 = λ(x4 − x1) L4 ← L4 − L1

Comme λ ̸= 0 et λ ̸= 1,

X ∈ Eλ(A)

⇐⇒


x1 = x4 L1 ↔ L4

x2 = x3 L2 ↔ L3

2x1 = (λ− 1)x2

2x1 + 2x2 = λx1

⇐⇒


x1 = x4, x2 = x3

2x1 = (λ− 1)x2

(λ + 1)x2 = λx1

⇐⇒


x1 = x4, x2 = x3

2x1 = (λ− 1)x2

2(λ + 1)x2 = λ(λ− 1)x2.

Si x2 = 0, tous les xi sont nuls et X = 0, ce qui n’est
pas, donc x2 ̸= 0. Alors la dernière équation devient
λ2 − 3λ− 2 = 0, dont les racines sont

λε =
3 + ε

√
13

2 où ε = ±1.

Les espaces propres correspondants sont

Eλε
(A) = R


λε − 1

2
2

λε − 1

 , ε = ±1.

Commentaire. A est symétrique réelle donc elle est
diagonalisable. Alors certaines étapes de la résolution
auraient pu être abrégées.
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1. Par linéarité de la dérivation, φ est clairement li-
néaire. En outre, si deg(P ) ⩽ n, deg(P ′′) ⩽ n − 2
donc deg(φ(P )) ⩽ n − 2 + 2 = n. Ainsi, φ est bien
un endomorphisme de Rn[X].
2. On a φ(1) = φ(X) = 0 et pour tout k ∈ [[2, n]],

φ(Xk) = (X − 1)2 k (k − 1)Xk−2

= k (k − 1)(Xk − 2Xk−1 + Xk−2).

Ainsi, la matrice de φ dans la base canonique est tri-
angulaire supérieure, avec sur la diagonale les k(k−1),
où k ∈ [[0, n]]. Donc

Sp(φ) = {k (k − 1), k ∈ [[0, n]]}.

3. 0 ∈ Sp(φ) donc φ n’est pas injectif.
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